Integer Programming Duality in Multiple Objective Programming

The weighted sums approach for linear and convex multiple criteria optimization is well studied. The weights determine a linear function of the criteria approximating a decision makers overall utility. Any efficient solution may be found in this way. This is not the case for multiple criteria intege...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of global optimization Ročník 29; číslo 1; s. 1 - 18
Hlavní autoři: Klamroth, Kathrin, Tind, Jørgen, Zust, Sibylle
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Nature B.V 01.05.2004
Témata:
ISSN:0925-5001, 1573-2916
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The weighted sums approach for linear and convex multiple criteria optimization is well studied. The weights determine a linear function of the criteria approximating a decision makers overall utility. Any efficient solution may be found in this way. This is not the case for multiple criteria integer programming. However, in this case one may apply the more general e-constraint approach, resulting in particular single-criteria integer programming problems to generate efficient solutions. We show how this approach implies a more general, composite utility function of the criteria yielding a unified treatment of multiple criteria optimization with and without integrality constraints. Moreover, any efficient solution can be found using appropriate composite functions. The functions may be generated by the classical solution methods such as cutting plane and branch and bound algorithms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-1
ISSN:0925-5001
1573-2916
DOI:10.1023/B:JOGO.0000035000.06101.07