Integer Programming Duality in Multiple Objective Programming

The weighted sums approach for linear and convex multiple criteria optimization is well studied. The weights determine a linear function of the criteria approximating a decision makers overall utility. Any efficient solution may be found in this way. This is not the case for multiple criteria intege...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization Jg. 29; H. 1; S. 1 - 18
Hauptverfasser: Klamroth, Kathrin, Tind, Jørgen, Zust, Sibylle
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Nature B.V 01.05.2004
Schlagworte:
ISSN:0925-5001, 1573-2916
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The weighted sums approach for linear and convex multiple criteria optimization is well studied. The weights determine a linear function of the criteria approximating a decision makers overall utility. Any efficient solution may be found in this way. This is not the case for multiple criteria integer programming. However, in this case one may apply the more general e-constraint approach, resulting in particular single-criteria integer programming problems to generate efficient solutions. We show how this approach implies a more general, composite utility function of the criteria yielding a unified treatment of multiple criteria optimization with and without integrality constraints. Moreover, any efficient solution can be found using appropriate composite functions. The functions may be generated by the classical solution methods such as cutting plane and branch and bound algorithms.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-1
ISSN:0925-5001
1573-2916
DOI:10.1023/B:JOGO.0000035000.06101.07