Machine learning assisted wrinkling design of hierarchical thin sheets

This study provides a novel mechanism and strategies for wrinkling design by machine learning, broadening the promising wrinkling application of hierarchical or programmable thin sheets. [Display omitted] Wrinkling in thin sheets is a long-standing subject in mechanics. Although the mechanism and mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational materials science Jg. 213; S. 111638
Hauptverfasser: Qiu, Xinghan, Yin, Yue, Zhang, Jiawei, Wang, Haotian, Tan, Huifeng, Liu, Yuanpeng, Wang, Changguo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.10.2022
Schlagworte:
ISSN:0927-0256, 1879-0801
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study provides a novel mechanism and strategies for wrinkling design by machine learning, broadening the promising wrinkling application of hierarchical or programmable thin sheets. [Display omitted] Wrinkling in thin sheets is a long-standing subject in mechanics. Although the mechanism and morphologies of wrinkles in homogeneous sheets have attracted intense interest and been well-studied, they have been elusive in inhomogeneous sheets. Here, we propose a data-driven framework for wrinkling design by trained back-propagation algorithm with a database of one hundred hierarchical thin sheets structures from finite element analysis. Results show that the wrinkling patterns can be classified into three categories, e.g., scattered wrinkling, decreased wrinkling and increased wrinkling. We further show that the “entropy” of wrinkle has an important role in wrinkling design in the hierarchical thin sheets. This study provides a novel mechanism and strategies for wrinkling design, broadening the promising wrinkling application of hierarchical or programmable thin sheets.
ISSN:0927-0256
1879-0801
DOI:10.1016/j.commatsci.2022.111638