Semantic segmentation of retinal exudates using a residual encoder–decoder architecture in diabetic retinopathy

Exudates are a common sign of diabetic retinopathy, which is a disease that affects the blood vessels in the retina. Early detection of exudates is critical to avoiding vision problems through continuous screening and treatment. In traditional clinical practice, the involved lesions are manually det...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microscopy research and technique Jg. 86; H. 11; S. 1443 - 1460
Hauptverfasser: Manan, Malik Abdul, Jinchao, Feng, Khan, Tariq M., Yaqub, Muhammad, Ahmed, Shahzad, Chuhan, Imran shabir
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Wiley Subscription Services, Inc 01.11.2023
Schlagworte:
ISSN:1059-910X, 1097-0029, 1097-0029
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Exudates are a common sign of diabetic retinopathy, which is a disease that affects the blood vessels in the retina. Early detection of exudates is critical to avoiding vision problems through continuous screening and treatment. In traditional clinical practice, the involved lesions are manually detected using photographs of the fundus. However, this task is cumbersome and time-consuming and requires intense effort due to the small size of the lesion and the low contrast of the images. Thus, computer-assisted diagnosis of retinal disease based on the detection of red lesions has been actively explored recently. In this paper, we present a comparison of deep convolutional neural network (CNN) architectures and propose a residual CNN with residual skip connections to reduce the parameter for the semantic segmentation of exudates in retinal images. A suitable image augmentation technique is used to improve the performance of network architecture. The proposed network can robustly segment exudates with high accuracy, which makes it suitable for diabetic retinopathy screening. A comparative performance analysis of three benchmark databases: E-ophtha, DIARETDB1, and Hamilton Ophthalmology Institute's Macular Edema, is presented. The proposed method achieves a precision of 0.95, 0.92, 0.97, accuracy of 0.98, 0.98, 0.98, sensitivity of 0.97, 0.95, 0.95, specificity of 0.99, 0.99, 0.99, and area under the curve of 0.97, 0.94, and 0.96, respectively. RESEARCH HIGHLIGHTS: The research focuses on the detection and segmentation of exudates in diabetic retinopathy, a disease affecting the retina. Early detection of exudates is important to avoid vision problems and requires continuous screening and treatment. Currently, manual detection is time-consuming and requires intense effort. The authors compare qualitative results of the state-of-the-art convolutional neural network (CNN) architectures and propose a computer-assisted diagnosis approach based on deep learning, using a residual CNN with residual skip connections to reduce parameters. The proposed method is evaluated on three benchmark databases and demonstrates high accuracy and suitability for diabetic retinopathy screening.
AbstractList Exudates are a common sign of diabetic retinopathy, which is a disease that affects the blood vessels in the retina. Early detection of exudates is critical to avoiding vision problems through continuous screening and treatment. In traditional clinical practice, the involved lesions are manually detected using photographs of the fundus. However, this task is cumbersome and time-consuming and requires intense effort due to the small size of the lesion and the low contrast of the images. Thus, computer-assisted diagnosis of retinal disease based on the detection of red lesions has been actively explored recently. In this paper, we present a comparison of deep convolutional neural network (CNN) architectures and propose a residual CNN with residual skip connections to reduce the parameter for the semantic segmentation of exudates in retinal images. A suitable image augmentation technique is used to improve the performance of network architecture. The proposed network can robustly segment exudates with high accuracy, which makes it suitable for diabetic retinopathy screening. A comparative performance analysis of three benchmark databases: E-ophtha, DIARETDB1, and Hamilton Ophthalmology Institute's Macular Edema, is presented. The proposed method achieves a precision of 0.95, 0.92, 0.97, accuracy of 0.98, 0.98, 0.98, sensitivity of 0.97, 0.95, 0.95, specificity of 0.99, 0.99, 0.99, and area under the curve of 0.97, 0.94, and 0.96, respectively. RESEARCH HIGHLIGHTS: The research focuses on the detection and segmentation of exudates in diabetic retinopathy, a disease affecting the retina. Early detection of exudates is important to avoid vision problems and requires continuous screening and treatment. Currently, manual detection is time-consuming and requires intense effort. The authors compare qualitative results of the state-of-the-art convolutional neural network (CNN) architectures and propose a computer-assisted diagnosis approach based on deep learning, using a residual CNN with residual skip connections to reduce parameters. The proposed method is evaluated on three benchmark databases and demonstrates high accuracy and suitability for diabetic retinopathy screening.Exudates are a common sign of diabetic retinopathy, which is a disease that affects the blood vessels in the retina. Early detection of exudates is critical to avoiding vision problems through continuous screening and treatment. In traditional clinical practice, the involved lesions are manually detected using photographs of the fundus. However, this task is cumbersome and time-consuming and requires intense effort due to the small size of the lesion and the low contrast of the images. Thus, computer-assisted diagnosis of retinal disease based on the detection of red lesions has been actively explored recently. In this paper, we present a comparison of deep convolutional neural network (CNN) architectures and propose a residual CNN with residual skip connections to reduce the parameter for the semantic segmentation of exudates in retinal images. A suitable image augmentation technique is used to improve the performance of network architecture. The proposed network can robustly segment exudates with high accuracy, which makes it suitable for diabetic retinopathy screening. A comparative performance analysis of three benchmark databases: E-ophtha, DIARETDB1, and Hamilton Ophthalmology Institute's Macular Edema, is presented. The proposed method achieves a precision of 0.95, 0.92, 0.97, accuracy of 0.98, 0.98, 0.98, sensitivity of 0.97, 0.95, 0.95, specificity of 0.99, 0.99, 0.99, and area under the curve of 0.97, 0.94, and 0.96, respectively. RESEARCH HIGHLIGHTS: The research focuses on the detection and segmentation of exudates in diabetic retinopathy, a disease affecting the retina. Early detection of exudates is important to avoid vision problems and requires continuous screening and treatment. Currently, manual detection is time-consuming and requires intense effort. The authors compare qualitative results of the state-of-the-art convolutional neural network (CNN) architectures and propose a computer-assisted diagnosis approach based on deep learning, using a residual CNN with residual skip connections to reduce parameters. The proposed method is evaluated on three benchmark databases and demonstrates high accuracy and suitability for diabetic retinopathy screening.
Exudates are a common sign of diabetic retinopathy, which is a disease that affects the blood vessels in the retina. Early detection of exudates is critical to avoiding vision problems through continuous screening and treatment. In traditional clinical practice, the involved lesions are manually detected using photographs of the fundus. However, this task is cumbersome and time-consuming and requires intense effort due to the small size of the lesion and the low contrast of the images. Thus, computer-assisted diagnosis of retinal disease based on the detection of red lesions has been actively explored recently. In this paper, we present a comparison of deep convolutional neural network (CNN) architectures and propose a residual CNN with residual skip connections to reduce the parameter for the semantic segmentation of exudates in retinal images. A suitable image augmentation technique is used to improve the performance of network architecture. The proposed network can robustly segment exudates with high accuracy, which makes it suitable for diabetic retinopathy screening. A comparative performance analysis of three benchmark databases: E-ophtha, DIARETDB1, and Hamilton Ophthalmology Institute's Macular Edema, is presented. The proposed method achieves a precision of 0.95, 0.92, 0.97, accuracy of 0.98, 0.98, 0.98, sensitivity of 0.97, 0.95, 0.95, specificity of 0.99, 0.99, 0.99, and area under the curve of 0.97, 0.94, and 0.96, respectively. RESEARCH HIGHLIGHTS: The research focuses on the detection and segmentation of exudates in diabetic retinopathy, a disease affecting the retina. Early detection of exudates is important to avoid vision problems and requires continuous screening and treatment. Currently, manual detection is time-consuming and requires intense effort. The authors compare qualitative results of the state-of-the-art convolutional neural network (CNN) architectures and propose a computer-assisted diagnosis approach based on deep learning, using a residual CNN with residual skip connections to reduce parameters. The proposed method is evaluated on three benchmark databases and demonstrates high accuracy and suitability for diabetic retinopathy screening.
Exudates are a common sign of diabetic retinopathy, which is a disease that affects the blood vessels in the retina. Early detection of exudates is critical to avoiding vision problems through continuous screening and treatment. In traditional clinical practice, the involved lesions are manually detected using photographs of the fundus. However, this task is cumbersome and time‐consuming and requires intense effort due to the small size of the lesion and the low contrast of the images. Thus, computer‐assisted diagnosis of retinal disease based on the detection of red lesions has been actively explored recently. In this paper, we present a comparison of deep convolutional neural network (CNN) architectures and propose a residual CNN with residual skip connections to reduce the parameter for the semantic segmentation of exudates in retinal images. A suitable image augmentation technique is used to improve the performance of network architecture. The proposed network can robustly segment exudates with high accuracy, which makes it suitable for diabetic retinopathy screening. A comparative performance analysis of three benchmark databases: E‐ophtha, DIARETDB1, and Hamilton Ophthalmology Institute's Macular Edema, is presented. The proposed method achieves a precision of 0.95, 0.92, 0.97, accuracy of 0.98, 0.98, 0.98, sensitivity of 0.97, 0.95, 0.95, specificity of 0.99, 0.99, 0.99, and area under the curve of 0.97, 0.94, and 0.96, respectively.Research HighlightsThe research focuses on the detection and segmentation of exudates in diabetic retinopathy, a disease affecting the retina.Early detection of exudates is important to avoid vision problems and requires continuous screening and treatment.Currently, manual detection is time‐consuming and requires intense effort.The authors compare qualitative results of the state‐of‐the‐art convolutional neural network (CNN) architectures and propose a computer‐assisted diagnosis approach based on deep learning, using a residual CNN with residual skip connections to reduce parameters.The proposed method is evaluated on three benchmark databases and demonstrates high accuracy and suitability for diabetic retinopathy screening.
Author Chuhan, Imran shabir
Yaqub, Muhammad
Jinchao, Feng
Khan, Tariq M.
Manan, Malik Abdul
Ahmed, Shahzad
Author_xml – sequence: 1
  givenname: Malik Abdul
  surname: Manan
  fullname: Manan, Malik Abdul
  organization: Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology Beijing University of Technology Beijing China
– sequence: 2
  givenname: Feng
  orcidid: 0000-0001-5603-8874
  surname: Jinchao
  fullname: Jinchao, Feng
  organization: Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology Beijing University of Technology Beijing China
– sequence: 3
  givenname: Tariq M.
  surname: Khan
  fullname: Khan, Tariq M.
  organization: School of IT, Deakin University Waurn Ponds Australia
– sequence: 4
  givenname: Muhammad
  surname: Yaqub
  fullname: Yaqub, Muhammad
  organization: Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology Beijing University of Technology Beijing China
– sequence: 5
  givenname: Shahzad
  surname: Ahmed
  fullname: Ahmed, Shahzad
  organization: Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology Beijing University of Technology Beijing China
– sequence: 6
  givenname: Imran shabir
  surname: Chuhan
  fullname: Chuhan, Imran shabir
  organization: Interdisciplinary Research Institute, Faculty of Science Beijing University of Technology Beijing China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37194727$$D View this record in MEDLINE/PubMed
BookMark eNptkctq3TAQhkVJaS7tpg9QBN2EghNdLNtalpBeINBFU-hOjKVxooMtn0gyNLu-Q94wT1L5nGQTCgMzo_nmB81_TA7CHJCQ95ydccbE-QanfCZqWatX5Igz3VblVR-stdKV5uz3ITlOacMY54rXb8ihbLmuW9EekbufOEHI3tKENxOGDNnPgc4DjZh9gJHin8VBxkSX5MMNhTJI3i3rJNjZYXz8--BwV1GI9tZntHmJSH2gzkOPq_hObN5Cvr1_S14PMCZ895RPyK8vl9cX36qrH1-_X3y-qqzkKlcd8r5pBtULwB5LVzsnOEdgtulE3agauHQKusYqOyinhl4o0G3NtdSgQJ6Q073uNs53C6ZsJp8sjiMEnJdkRMfrEm0nC_rxBbqZl1g-v1KtZJpJwQv14Yla-gmd2UY_Qbw3z8csANsDNs4pRRyM9ft75gh-NJyZ1S-z-mV2fpWVTy9WnlX_A_8DKZmZJA
CitedBy_id crossref_primary_10_1002_ima_70144
crossref_primary_10_1016_j_artmed_2025_103167
Cites_doi 10.1007/s10044-017-0661-4
10.1167/iovs.06-0996
10.1016/j.neucom.2018.10.103
10.1109/ACCESS.2019.2953259
10.1049/ipr2.12007
10.1109/JTEHM.2018.2835315
10.3390/photonics9120923
10.1109/ICCKE.2012.6395375
10.1016/j.media.2011.07.004
10.1109/IRI.2018.00074
10.1109/CVPR.2008.4587503
10.1109/EMBC.2018.8512354
10.1109/ACCESS.2018.2794463
10.1134/S0006350915020220
10.1046/j.1464-5491.2003.01085.x
10.5244/C.21.15
10.1016/j.ins.2017.08.050
10.1016/j.compeleceng.2021.107036
10.1007/s10439-009-9707-0
10.1109/IJCNN48605.2020.9207668
10.1109/TMI.2002.806290
10.1038/eye.1994.66
10.1109/EMBC.2012.6347349
10.1007/s10044-017-0630-y
10.1016/j.ins.2014.10.059
10.1016/j.medengphy.2007.04.010
10.1007/978-3-642-15561-1_31
10.1088/0031-9155/52/24/012
10.1016/j.media.2014.05.004
10.1364/BOE.9.004863
10.1016/j.compbiomed.2022.106277
10.1117/12.2293549
10.1109/CVPR.2016.90
10.1167/iovs.11-7275
10.1007/978-3-319-70093-9_76
10.1007/s10044-018-0696-1
10.1016/j.cmpb.2016.09.018
10.1016/j.eswa.2018.12.008
10.1016/j.cmpb.2014.01.010
10.1613/jair.953
10.1007/978-3-030-63820-7_18
10.1038/s41598-021-81539-3
10.1038/s41598-022-26482-7
10.3390/diagnostics11010114
10.1109/IVCNZ.2016.7804441
10.1109/DICTA52665.2021.9647320
10.1007/s11760-017-1114-7
10.1109/ACCESS.2020.2998635
10.1109/TBME.2003.820400
10.1109/CVPR.2015.7298965
10.1016/j.bspc.2021.103169
10.1109/IJCNN48605.2020.9207411
10.1016/j.irbm.2013.01.010
10.1016/j.bspc.2017.02.012
10.1016/j.ins.2019.06.011
10.1007/BF00920219
ContentType Journal Article
Copyright 2023 Wiley Periodicals LLC.
Copyright_xml – notice: 2023 Wiley Periodicals LLC.
DBID AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7SC
7SE
7SP
7SR
7SS
7TA
7TB
7U5
7U7
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1002/jemt.24345
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-0029
EndPage 1460
ExternalDocumentID 37194727
10_1002_jemt_24345
Genre Journal Article
GrantInformation_xml – fundername: National Science Foundation of China
  grantid: 82171992
– fundername: Beijing Laboratory of Advanced Information Networks
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AETEA
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O8X
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TWZ
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIK
WJL
WOHZO
WQJ
WVDHM
WXSBR
X7M
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
NPM
RWI
RWR
WRC
7QF
7QO
7QP
7QQ
7SC
7SE
7SP
7SR
7SS
7TA
7TB
7U5
7U7
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c315t-8e1b66f5b2aebe8e14dd211ea0c6824654a13d5a86c5cf5d5fb25a9741939a5a3
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000990979900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1059-910X
1097-0029
IngestDate Thu Oct 02 05:19:05 EDT 2025
Sat Nov 29 14:43:58 EST 2025
Wed Feb 19 02:25:10 EST 2025
Sat Nov 29 07:02:30 EST 2025
Tue Nov 18 22:03:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords retinal image
data augmentation
exudates
residual network
semantic segmentation
diabetic retinopathy
convolution neural network
Language English
License 2023 Wiley Periodicals LLC.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c315t-8e1b66f5b2aebe8e14dd211ea0c6824654a13d5a86c5cf5d5fb25a9741939a5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5603-8874
PMID 37194727
PQID 2873090321
PQPubID 1016375
PageCount 18
ParticipantIDs proquest_miscellaneous_2814814783
proquest_journals_2873090321
pubmed_primary_37194727
crossref_citationtrail_10_1002_jemt_24345
crossref_primary_10_1002_jemt_24345
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Microscopy research and technique
PublicationTitleAlternate Microsc Res Tech
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_48_1
e_1_2_11_2_1
e_1_2_11_60_1
e_1_2_11_20_1
e_1_2_11_45_1
Khan T. M. (e_1_2_11_30_1) 2022
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_62_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_50_1
Bhawarkar Y. (e_1_2_11_4_1) 2022
e_1_2_11_10_1
Weeks J. E. (e_1_2_11_59_1) 1897; 8
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_58_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_12_1
e_1_2_11_54_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
Khan T. M. (e_1_2_11_33_1) 2021
e_1_2_11_61_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_46_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
References_xml – ident: e_1_2_11_24_1
  doi: 10.1007/s10044-017-0661-4
– ident: e_1_2_11_40_1
  doi: 10.1167/iovs.06-0996
– ident: e_1_2_11_16_1
  doi: 10.1016/j.neucom.2018.10.103
– ident: e_1_2_11_34_1
  doi: 10.1109/ACCESS.2019.2953259
– ident: e_1_2_11_49_1
  doi: 10.1049/ipr2.12007
– volume-title: Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR)
  year: 2021
  ident: e_1_2_11_33_1
– ident: e_1_2_11_3_1
  doi: 10.1109/JTEHM.2018.2835315
– ident: e_1_2_11_21_1
  doi: 10.3390/photonics9120923
– ident: e_1_2_11_9_1
  doi: 10.1109/ICCKE.2012.6395375
– ident: e_1_2_11_15_1
  doi: 10.1016/j.media.2011.07.004
– ident: e_1_2_11_58_1
  doi: 10.1109/IRI.2018.00074
– ident: e_1_2_11_48_1
  doi: 10.1109/CVPR.2008.4587503
– ident: e_1_2_11_6_1
  doi: 10.1109/EMBC.2018.8512354
– ident: e_1_2_11_52_1
  doi: 10.1109/ACCESS.2018.2794463
– ident: e_1_2_11_60_1
  doi: 10.1134/S0006350915020220
– volume: 8
  start-page: 158
  year: 1897
  ident: e_1_2_11_59_1
  article-title: Retinitis proliferans
  publication-title: Transactions of the American Ophthalmological Society
– ident: e_1_2_11_56_1
  doi: 10.1046/j.1464-5491.2003.01085.x
– ident: e_1_2_11_22_1
  doi: 10.5244/C.21.15
– ident: e_1_2_11_54_1
  doi: 10.1016/j.ins.2017.08.050
– ident: e_1_2_11_19_1
  doi: 10.1016/j.compeleceng.2021.107036
– ident: e_1_2_11_14_1
  doi: 10.1007/s10439-009-9707-0
– ident: e_1_2_11_31_1
  doi: 10.1109/IJCNN48605.2020.9207668
– ident: e_1_2_11_57_1
  doi: 10.1109/TMI.2002.806290
– ident: e_1_2_11_13_1
  doi: 10.1038/eye.1994.66
– ident: e_1_2_11_17_1
  doi: 10.1109/EMBC.2012.6347349
– volume-title: Fifth International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT)
  ident: e_1_2_11_46_1
– ident: e_1_2_11_50_1
  doi: 10.1007/s10044-017-0630-y
– ident: e_1_2_11_42_1
  doi: 10.1016/j.ins.2014.10.059
– ident: e_1_2_11_47_1
  doi: 10.1016/j.medengphy.2007.04.010
– ident: e_1_2_11_35_1
  doi: 10.1007/978-3-642-15561-1_31
– ident: e_1_2_11_11_1
  doi: 10.1088/0031-9155/52/24/012
– ident: e_1_2_11_61_1
  doi: 10.1016/j.media.2014.05.004
– ident: e_1_2_11_62_1
  doi: 10.1364/BOE.9.004863
– ident: e_1_2_11_20_1
  doi: 10.1016/j.compbiomed.2022.106277
– ident: e_1_2_11_7_1
  doi: 10.1117/12.2293549
– ident: e_1_2_11_18_1
  doi: 10.1109/CVPR.2016.90
– volume-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
  year: 2022
  ident: e_1_2_11_30_1
– ident: e_1_2_11_55_1
  doi: 10.1167/iovs.11-7275
– ident: e_1_2_11_10_1
  doi: 10.1007/978-3-319-70093-9_76
– ident: e_1_2_11_25_1
  doi: 10.1007/s10044-018-0696-1
– ident: e_1_2_11_44_1
  doi: 10.1016/j.cmpb.2016.09.018
– ident: e_1_2_11_45_1
  doi: 10.1016/j.eswa.2018.12.008
– ident: e_1_2_11_2_1
  doi: 10.1016/j.cmpb.2014.01.010
– volume-title: ITM Web of Conferences
  year: 2022
  ident: e_1_2_11_4_1
– ident: e_1_2_11_5_1
  doi: 10.1613/jair.953
– ident: e_1_2_11_28_1
  doi: 10.1007/978-3-030-63820-7_18
– ident: e_1_2_11_41_1
  doi: 10.1038/s41598-021-81539-3
– ident: e_1_2_11_27_1
  doi: 10.1038/s41598-022-26482-7
– ident: e_1_2_11_39_1
  doi: 10.3390/diagnostics11010114
– ident: e_1_2_11_23_1
  doi: 10.1109/IVCNZ.2016.7804441
– ident: e_1_2_11_29_1
  doi: 10.1109/DICTA52665.2021.9647320
– ident: e_1_2_11_51_1
  doi: 10.1007/s11760-017-1114-7
– ident: e_1_2_11_53_1
  doi: 10.1109/ACCESS.2020.2998635
– ident: e_1_2_11_36_1
  doi: 10.1109/TBME.2003.820400
– ident: e_1_2_11_38_1
  doi: 10.1109/CVPR.2015.7298965
– ident: e_1_2_11_26_1
  doi: 10.1016/j.bspc.2021.103169
– ident: e_1_2_11_32_1
  doi: 10.1109/IJCNN48605.2020.9207411
– ident: e_1_2_11_8_1
  doi: 10.1016/j.irbm.2013.01.010
– ident: e_1_2_11_12_1
  doi: 10.1016/j.bspc.2017.02.012
– ident: e_1_2_11_37_1
  doi: 10.1016/j.ins.2019.06.011
– ident: e_1_2_11_43_1
  doi: 10.1007/BF00920219
SSID ssj0011514
Score 2.4578001
Snippet Exudates are a common sign of diabetic retinopathy, which is a disease that affects the blood vessels in the retina. Early detection of exudates is critical to...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1443
SubjectTerms Accuracy
Artificial neural networks
Benchmarks
Blood vessels
Coders
Computer architecture
Deep learning
Diabetes
Diabetes mellitus
Diabetic retinopathy
Diagnosis
Edema
Exudates
Exudation
Health services
Image contrast
Image processing
Image segmentation
Lesions
Machine learning
Medical imaging
Neural networks
Ophthalmology
Parameters
Performance enhancement
Retina
Retinal images
Retinopathy
Screening
Semantic segmentation
Semantics
Vision
Title Semantic segmentation of retinal exudates using a residual encoder–decoder architecture in diabetic retinopathy
URI https://www.ncbi.nlm.nih.gov/pubmed/37194727
https://www.proquest.com/docview/2873090321
https://www.proquest.com/docview/2814814783
Volume 86
WOSCitedRecordID wos000990979900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1097-0029
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011514
  issn: 1059-910X
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELe6DSReEP8pjMkIhISiQGznj_M4wSaEuoGgk8pT5DjOWmjTdm2m7o3vwLfjkU_C2XHSVBpoPCBVUZNYjuL75c7n8_0OoedB5IeMyNRNAwUOCsm5m5LMd7kKw4wKRoU0ku5Fx8d8MIg_djo_61yY83FUFHy1imf_VdRwDYStU2f_QdxNp3AB_oPQ4Qhih-OVBP9ZTWC0RtJZqNOJzSwyc0Kdr6jnnmpVajd_4ZRmnUDAjUWVkqVJLTWhiN0AwTJlzp2NaIPePmsWbA35M3Q51VWNN6LDR3qXn853uXAsmVCVP9cQxq7Xwcejb85-mpVjsxGnQSqM6KnzflTIoZg2NmFoSymDez9fr-J-EfPSBJWOyqGYTETWXsigzGb0XV1dttQ0TApBTXuDyorZa5pX1rPrJ1a3W5pti2HS0tTgSLKW1QeD4V1qUSqG2q9qsnxFfVZRX27Sdh9_SA5Per2kfzDov5jNXV3RTEf-bXmXLbRDoyAGo7Hz9hM0bGJcpGKeb96lIc-lr9eP25wu_cEHMnOh_i100zoxeL8C323UUcUddL0qa3pxF81rCOI2BPE0xxaCuIYgNhDEAtcQxBaCv77_sODDbfDhUYFr8OEW-O6hk8OD_pt3ri3t4UpGgiWoApKGYR6kVIAWgTM_yyghSngy5FRz_AnCskDwUAYyD7IgT2kgwPcFfyMWgWD30XYxLdRDhD0_J7GOXsPk2k8554qTiEjB0tTPw5h00ct6BBNpee91-ZVxUjF200SPdmJGu4ueNW1nFdvLpa12a0Ek9sNfJJSDrYw9RuGBT5vboKt1AE4UalrqNsSHX8RZFz2oBNg8hkUk9sGZePT3zh-jG-tvZxdtL89K9QRdk-fL0eJsD21FA75ngfYbozjG4A
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semantic+segmentation+of+retinal+exudates+using+a+residual+encoder%E2%80%93decoder+architecture+in+diabetic+retinopathy&rft.jtitle=Microscopy+research+and+technique&rft.au=Malik+Abdul+Manan&rft.au=Feng+Jinchao&rft.au=Khan%2C+Tariq+M&rft.au=Yaqub%2C+Muhammad&rft.date=2023-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1059-910X&rft.eissn=1097-0029&rft.volume=86&rft.issue=11&rft.spage=1443&rft.epage=1460&rft_id=info:doi/10.1002%2Fjemt.24345&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-910X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-910X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-910X&client=summon