Semantic segmentation of retinal exudates using a residual encoder–decoder architecture in diabetic retinopathy
Exudates are a common sign of diabetic retinopathy, which is a disease that affects the blood vessels in the retina. Early detection of exudates is critical to avoiding vision problems through continuous screening and treatment. In traditional clinical practice, the involved lesions are manually det...
Uloženo v:
| Vydáno v: | Microscopy research and technique Ročník 86; číslo 11; s. 1443 - 1460 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Wiley Subscription Services, Inc
01.11.2023
|
| Témata: | |
| ISSN: | 1059-910X, 1097-0029, 1097-0029 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Exudates are a common sign of diabetic retinopathy, which is a disease that affects the blood vessels in the retina. Early detection of exudates is critical to avoiding vision problems through continuous screening and treatment. In traditional clinical practice, the involved lesions are manually detected using photographs of the fundus. However, this task is cumbersome and time-consuming and requires intense effort due to the small size of the lesion and the low contrast of the images. Thus, computer-assisted diagnosis of retinal disease based on the detection of red lesions has been actively explored recently. In this paper, we present a comparison of deep convolutional neural network (CNN) architectures and propose a residual CNN with residual skip connections to reduce the parameter for the semantic segmentation of exudates in retinal images. A suitable image augmentation technique is used to improve the performance of network architecture. The proposed network can robustly segment exudates with high accuracy, which makes it suitable for diabetic retinopathy screening. A comparative performance analysis of three benchmark databases: E-ophtha, DIARETDB1, and Hamilton Ophthalmology Institute's Macular Edema, is presented. The proposed method achieves a precision of 0.95, 0.92, 0.97, accuracy of 0.98, 0.98, 0.98, sensitivity of 0.97, 0.95, 0.95, specificity of 0.99, 0.99, 0.99, and area under the curve of 0.97, 0.94, and 0.96, respectively. RESEARCH HIGHLIGHTS: The research focuses on the detection and segmentation of exudates in diabetic retinopathy, a disease affecting the retina. Early detection of exudates is important to avoid vision problems and requires continuous screening and treatment. Currently, manual detection is time-consuming and requires intense effort. The authors compare qualitative results of the state-of-the-art convolutional neural network (CNN) architectures and propose a computer-assisted diagnosis approach based on deep learning, using a residual CNN with residual skip connections to reduce parameters. The proposed method is evaluated on three benchmark databases and demonstrates high accuracy and suitability for diabetic retinopathy screening. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1059-910X 1097-0029 1097-0029 |
| DOI: | 10.1002/jemt.24345 |