A dual variant of Benson’s “outer approximation algorithm” for multiple objective linear programming
Outcome space methods construct the set of nondominated points in the objective (outcome) space of a multiple objective linear programme. In this paper, we employ results from geometric duality theory for multiple objective linear programmes to derive a dual variant of Benson’s “outer approximation...
Saved in:
| Published in: | Journal of global optimization Vol. 52; no. 4; pp. 757 - 778 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Boston
Springer US
01.04.2012
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0925-5001, 1573-2916 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Outcome space methods construct the set of nondominated points in the objective (outcome) space of a multiple objective linear programme. In this paper, we employ results from geometric duality theory for multiple objective linear programmes to derive a dual variant of Benson’s “outer approximation algorithm” to solve multiobjective linear programmes in objective space. We also suggest some improvements of the original version of the algorithm and prove that solving the dual provides a weight set decomposition. We compare both algorithms on small illustrative and on practically relevant examples. |
|---|---|
| Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 0925-5001 1573-2916 |
| DOI: | 10.1007/s10898-011-9709-y |