A dual variant of Benson’s “outer approximation algorithm” for multiple objective linear programming

Outcome space methods construct the set of nondominated points in the objective (outcome) space of a multiple objective linear programme. In this paper, we employ results from geometric duality theory for multiple objective linear programmes to derive a dual variant of Benson’s “outer approximation...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of global optimization Ročník 52; číslo 4; s. 757 - 778
Hlavní autoři: Ehrgott, Matthias, Löhne, Andreas, Shao, Lizhen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer US 01.04.2012
Springer Nature B.V
Témata:
ISSN:0925-5001, 1573-2916
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Outcome space methods construct the set of nondominated points in the objective (outcome) space of a multiple objective linear programme. In this paper, we employ results from geometric duality theory for multiple objective linear programmes to derive a dual variant of Benson’s “outer approximation algorithm” to solve multiobjective linear programmes in objective space. We also suggest some improvements of the original version of the algorithm and prove that solving the dual provides a weight set decomposition. We compare both algorithms on small illustrative and on practically relevant examples.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-011-9709-y