A dual variant of Benson’s “outer approximation algorithm” for multiple objective linear programming
Outcome space methods construct the set of nondominated points in the objective (outcome) space of a multiple objective linear programme. In this paper, we employ results from geometric duality theory for multiple objective linear programmes to derive a dual variant of Benson’s “outer approximation...
Gespeichert in:
| Veröffentlicht in: | Journal of global optimization Jg. 52; H. 4; S. 757 - 778 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Boston
Springer US
01.04.2012
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0925-5001, 1573-2916 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Outcome space methods construct the set of nondominated points in the objective (outcome) space of a multiple objective linear programme. In this paper, we employ results from geometric duality theory for multiple objective linear programmes to derive a dual variant of Benson’s “outer approximation algorithm” to solve multiobjective linear programmes in objective space. We also suggest some improvements of the original version of the algorithm and prove that solving the dual provides a weight set decomposition. We compare both algorithms on small illustrative and on practically relevant examples. |
|---|---|
| Bibliographie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 0925-5001 1573-2916 |
| DOI: | 10.1007/s10898-011-9709-y |