Global optimization for a class of fractional programming problems

This paper presents a canonical dual approach to minimizing the sum of a quadratic function and the ratio of two quadratic functions, which is a type of non-convex optimization problem subject to an elliptic constraint. We first relax the fractional structure by introducing a family of parametric su...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of global optimization Ročník 45; číslo 3; s. 337 - 353
Hlavní autoři: Fang, Shu-Cherng, Gao, David Y., Sheu, Ruey-Lin, Xing, Wenxun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer US 01.11.2009
Springer Nature B.V
Témata:
ISSN:0925-5001, 1573-2916
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents a canonical dual approach to minimizing the sum of a quadratic function and the ratio of two quadratic functions, which is a type of non-convex optimization problem subject to an elliptic constraint. We first relax the fractional structure by introducing a family of parametric subproblems. Under proper conditions on the “problem-defining” matrices associated with the three quadratic functions, we show that the canonical dual of each subproblem becomes a one-dimensional concave maximization problem that exhibits no duality gap. Since the infimum of the optima of the parameterized subproblems leads to a solution to the original problem, we then derive some optimality conditions and existence conditions for finding a global minimizer of the original problem. Some numerical results using the quasi-Newton and line search methods are presented to illustrate our approach.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-008-9378-7