Combined bound-grid-factor constraints for enhancing RLT relaxations for polynomial programs

This paper studies the global optimization of polynomial programming problems using Reformulation-Linearization Technique (RLT)-based linear programming (LP) relaxations. We introduce a new class of bound-grid-factor constraints that can be judiciously used to augment the basic RLT relaxations in or...

Full description

Saved in:
Bibliographic Details
Published in:Journal of global optimization Vol. 51; no. 3; pp. 377 - 393
Main Authors: Sherali, Hanif D., Dalkiran, Evrim
Format: Journal Article
Language:English
Published: Boston Springer US 01.11.2011
Springer Nature B.V
Subjects:
ISSN:0925-5001, 1573-2916
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper studies the global optimization of polynomial programming problems using Reformulation-Linearization Technique (RLT)-based linear programming (LP) relaxations. We introduce a new class of bound-grid-factor constraints that can be judiciously used to augment the basic RLT relaxations in order to improve the quality of lower bounds and enhance the performance of global branch-and-bound algorithms. Certain theoretical properties are established that shed light on the effect of these valid inequalities in driving the discrepancies between RLT variables and their associated nonlinear products to zero. To preserve computational expediency while promoting efficiency, we propose certain concurrent and sequential cut generation routines and various grid-factor selection rules. The results indicate a significant tightening of lower bounds, which yields an overall reduction in computational effort for solving a test-bed of polynomial programming problems to global optimality in comparison with the basic RLT procedure as well as the commercial software BARON.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-010-9639-0