Mobile Scheduling for Spatiotemporal Detection in Wireless Sensor Networks
Wireless sensor networks (WSNs) deployed for mission-critical applications face the fundamental challenge of meeting stringent spatiotemporal performance requirements using nodes with limited sensing capacity. Although advance network planning and dense node deployment may initially achieve the requ...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on parallel and distributed systems Jg. 21; H. 12; S. 1851 - 1866 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.12.2010
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1045-9219, 1558-2183 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Wireless sensor networks (WSNs) deployed for mission-critical applications face the fundamental challenge of meeting stringent spatiotemporal performance requirements using nodes with limited sensing capacity. Although advance network planning and dense node deployment may initially achieve the required performance, they often fail to adapt to the unpredictability and variability of physical reality. This paper explores efficient use of mobile sensors to address limitations of static WSNs for target detection. We propose a data-fusion-based detection model that enables static and mobile sensors to effectively collaborate in target detection. An optimal sensor movement scheduling algorithm is developed to minimize the total moving distance of sensors while achieving a set of spatiotemporal performance requirements including high detection probability, low system false alarm rate, and bounded detection delay. The effectiveness of our approach is validated by extensive simulations based on real data traces collected by 23 sensor nodes. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 1045-9219 1558-2183 |
| DOI: | 10.1109/TPDS.2010.41 |