Solving chance-constrained combinatorial problems to optimality
The aim of this paper is to provide new efficient methods for solving general chance-constrained integer linear programs to optimality. Valid linear inequalities are given for these problems. They are proved to characterize properly the set of solutions. They are based on a specific scenario, whose...
Uloženo v:
| Vydáno v: | Computational optimization and applications Ročník 45; číslo 3; s. 607 - 638 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Boston
Springer US
01.04.2010
Springer Nature B.V |
| Témata: | |
| ISSN: | 0926-6003, 1573-2894 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The aim of this paper is to provide new efficient methods for solving general chance-constrained integer linear programs to optimality. Valid linear inequalities are given for these problems. They are proved to characterize properly the set of solutions. They are based on a specific scenario, whose definition impacts strongly on the quality of the linear relaxation built. A branch-and-cut algorithm is described to solve chance-constrained combinatorial problems to optimality. Numerical tests validate the theoretical analysis and illustrate the practical efficiency of the proposed approach. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 0926-6003 1573-2894 |
| DOI: | 10.1007/s10589-008-9177-6 |