Solving chance-constrained combinatorial problems to optimality

The aim of this paper is to provide new efficient methods for solving general chance-constrained integer linear programs to optimality. Valid linear inequalities are given for these problems. They are proved to characterize properly the set of solutions. They are based on a specific scenario, whose...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational optimization and applications Ročník 45; číslo 3; s. 607 - 638
Hlavní autor: Klopfenstein, Olivier
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer US 01.04.2010
Springer Nature B.V
Témata:
ISSN:0926-6003, 1573-2894
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The aim of this paper is to provide new efficient methods for solving general chance-constrained integer linear programs to optimality. Valid linear inequalities are given for these problems. They are proved to characterize properly the set of solutions. They are based on a specific scenario, whose definition impacts strongly on the quality of the linear relaxation built. A branch-and-cut algorithm is described to solve chance-constrained combinatorial problems to optimality. Numerical tests validate the theoretical analysis and illustrate the practical efficiency of the proposed approach.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0926-6003
1573-2894
DOI:10.1007/s10589-008-9177-6