Seismic wave propagation in coupled fluid and porous media: A finite element approach

We present a numerical method to simulate seismic wave propagation in coupled fluid and porous media. We developed a numerical finite element–based algorithm to approximate solutions to viscoacoustic and Biot's equations, considering the open pore conditions at the interfaces between both media...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical Prospecting Vol. 72; no. 8; pp. 2919 - 2941
Main Authors: Bucher, Federico, Zyserman, Fabio I., Monachesi, Leonardo B.
Format: Journal Article
Language:English
Published: Houten Wiley Subscription Services, Inc 01.10.2024
Subjects:
ISSN:0016-8025, 1365-2478
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a numerical method to simulate seismic wave propagation in coupled fluid and porous media. We developed a numerical finite element–based algorithm to approximate solutions to viscoacoustic and Biot's equations, considering the open pore conditions at the interfaces between both media. The algorithm architecture allows to simulate arbitrary distributions of viscoacoustic and poroelastic regions, facilitating the modelling of heterogeneous systems involving complex geometries. The algorithm includes a double parallelization scheme whose efficiency in terms of computing time and memory requirements was tested for different core distributions and mesh sizes. We validate our proposal by performing a comparison between its results and those obtained with a well‐known freely available code. We test its capabilities by studying two different scenarios with geophysical interest: a lake with an irregular bottom and a fractured porous medium.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0016-8025
1365-2478
DOI:10.1111/1365-2478.13562