Radon Inversion Problem for Holomorphic Functions on Circular, Strictly Convex Domains

In this paper we study the so-called Radon inversion problem in bounded, circular, strictly convex domains with C 2 boundary. We show that given p > 0 and a strictly positive, continuous function Φ on ∂ Ω , by use of homogeneous polynomials it is possible to construct a holomorphic function f ∈ O...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Complex analysis and operator theory Ročník 15; číslo 4
Hlavní autoři: Pierzchała, P., Kot, P.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.06.2021
Springer Nature B.V
Témata:
ISSN:1661-8254, 1661-8262
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper we study the so-called Radon inversion problem in bounded, circular, strictly convex domains with C 2 boundary. We show that given p > 0 and a strictly positive, continuous function Φ on ∂ Ω , by use of homogeneous polynomials it is possible to construct a holomorphic function f ∈ O ( Ω ) such that ∫ 0 1 | f ( z t ) | p d t = Φ ( z ) for all z ∈ ∂ Ω . In our approach we make use of so-called lacunary K -summing polynomials (see definition below) that allow us to construct solutions with in some sense extremal properties.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1661-8254
1661-8262
DOI:10.1007/s11785-021-01130-6