Radon Inversion Problem for Holomorphic Functions on Circular, Strictly Convex Domains
In this paper we study the so-called Radon inversion problem in bounded, circular, strictly convex domains with C 2 boundary. We show that given p > 0 and a strictly positive, continuous function Φ on ∂ Ω , by use of homogeneous polynomials it is possible to construct a holomorphic function f ∈ O...
Uloženo v:
| Vydáno v: | Complex analysis and operator theory Ročník 15; číslo 4 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.06.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 1661-8254, 1661-8262 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper we study the so-called Radon inversion problem in bounded, circular, strictly convex domains with
C
2
boundary. We show that given
p
>
0
and a strictly positive, continuous function
Φ
on
∂
Ω
, by use of homogeneous polynomials it is possible to construct a holomorphic function
f
∈
O
(
Ω
)
such that
∫
0
1
|
f
(
z
t
)
|
p
d
t
=
Φ
(
z
)
for all
z
∈
∂
Ω
. In our approach we make use of so-called lacunary
K
-summing polynomials (see definition below) that allow us to construct solutions with in some sense extremal properties. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1661-8254 1661-8262 |
| DOI: | 10.1007/s11785-021-01130-6 |