Radon Inversion Problem for Holomorphic Functions on Circular, Strictly Convex Domains
In this paper we study the so-called Radon inversion problem in bounded, circular, strictly convex domains with C 2 boundary. We show that given p > 0 and a strictly positive, continuous function Φ on ∂ Ω , by use of homogeneous polynomials it is possible to construct a holomorphic function f ∈ O...
Gespeichert in:
| Veröffentlicht in: | Complex analysis and operator theory Jg. 15; H. 4 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
01.06.2021
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1661-8254, 1661-8262 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper we study the so-called Radon inversion problem in bounded, circular, strictly convex domains with
C
2
boundary. We show that given
p
>
0
and a strictly positive, continuous function
Φ
on
∂
Ω
, by use of homogeneous polynomials it is possible to construct a holomorphic function
f
∈
O
(
Ω
)
such that
∫
0
1
|
f
(
z
t
)
|
p
d
t
=
Φ
(
z
)
for all
z
∈
∂
Ω
. In our approach we make use of so-called lacunary
K
-summing polynomials (see definition below) that allow us to construct solutions with in some sense extremal properties. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1661-8254 1661-8262 |
| DOI: | 10.1007/s11785-021-01130-6 |