A study on k-walk generation algorithm to prevent the tottering in graph edit distance heuristic algorithms
Graph edit distance is usually used for graph similarity checking due to its low information loss and flexibility advantages. However, graph edit distance can’t be used efficiently because it is an NP-Hard problem. Many graph edit distance heuristic algorithms have been proposed to solve this proble...
Saved in:
| Published in: | Journal of combinatorial optimization Vol. 49; no. 1; p. 9 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.01.2025
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1382-6905, 1573-2886 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Graph edit distance is usually used for graph similarity checking due to its low information loss and flexibility advantages. However, graph edit distance can’t be used efficiently because it is an NP-Hard problem. Many graph edit distance heuristic algorithms have been proposed to solve this problem. However, some heuristic algorithms for generating
walk
generate unnecessary sequences because of the tottering, which leads to many problems. Because of this, various problems arise, like a decrease in approximation accuracy and an increase in execution time. In this paper, we propose an accurate and efficient graph edit distance heuristic algorithm that prevents tottering when generating
walk
. When generating
walk
, the traversed node‘s information is saved into the queue and then proceeds to traverse the next node. Then, it is possible to prevent the tottering by comparing an existing traversed node with an enqueued one. Through this, we propose a new
walk
generation algorithm that prevents generating unnecessary
walk
and applies it to existing algorithms to prevent the tottering. |
|---|---|
| AbstractList | Graph edit distance is usually used for graph similarity checking due to its low information loss and flexibility advantages. However, graph edit distance can’t be used efficiently because it is an NP-Hard problem. Many graph edit distance heuristic algorithms have been proposed to solve this problem. However, some heuristic algorithms for generating
walk
generate unnecessary sequences because of the tottering, which leads to many problems. Because of this, various problems arise, like a decrease in approximation accuracy and an increase in execution time. In this paper, we propose an accurate and efficient graph edit distance heuristic algorithm that prevents tottering when generating
walk
. When generating
walk
, the traversed node‘s information is saved into the queue and then proceeds to traverse the next node. Then, it is possible to prevent the tottering by comparing an existing traversed node with an enqueued one. Through this, we propose a new
walk
generation algorithm that prevents generating unnecessary
walk
and applies it to existing algorithms to prevent the tottering. Graph edit distance is usually used for graph similarity checking due to its low information loss and flexibility advantages. However, graph edit distance can’t be used efficiently because it is an NP-Hard problem. Many graph edit distance heuristic algorithms have been proposed to solve this problem. However, some heuristic algorithms for generating $$walk$$ walk generate unnecessary sequences because of the tottering, which leads to many problems. Because of this, various problems arise, like a decrease in approximation accuracy and an increase in execution time. In this paper, we propose an accurate and efficient graph edit distance heuristic algorithm that prevents tottering when generating $$walk$$ walk . When generating $$walk$$ walk , the traversed node‘s information is saved into the queue and then proceeds to traverse the next node. Then, it is possible to prevent the tottering by comparing an existing traversed node with an enqueued one. Through this, we propose a new $$walk$$ walk generation algorithm that prevents generating unnecessary $$walk$$ walk and applies it to existing algorithms to prevent the tottering. Graph edit distance is usually used for graph similarity checking due to its low information loss and flexibility advantages. However, graph edit distance can’t be used efficiently because it is an NP-Hard problem. Many graph edit distance heuristic algorithms have been proposed to solve this problem. However, some heuristic algorithms for generating walk generate unnecessary sequences because of the tottering, which leads to many problems. Because of this, various problems arise, like a decrease in approximation accuracy and an increase in execution time. In this paper, we propose an accurate and efficient graph edit distance heuristic algorithm that prevents tottering when generating walk. When generating walk, the traversed node‘s information is saved into the queue and then proceeds to traverse the next node. Then, it is possible to prevent the tottering by comparing an existing traversed node with an enqueued one. Through this, we propose a new walk generation algorithm that prevents generating unnecessary walk and applies it to existing algorithms to prevent the tottering. |
| ArticleNumber | 9 |
| Author | Yoon, SeongCheol Lee, Im-Yeong Kim, Su-Hyun Seo, Daehee |
| Author_xml | – sequence: 1 givenname: SeongCheol surname: Yoon fullname: Yoon, SeongCheol organization: Soonchunhyang University – sequence: 2 givenname: Daehee surname: Seo fullname: Seo, Daehee organization: Sangmyung University – sequence: 3 givenname: Su-Hyun surname: Kim fullname: Kim, Su-Hyun email: kimsh@sch.ac.kr organization: Soonchunhyang University – sequence: 4 givenname: Im-Yeong surname: Lee fullname: Lee, Im-Yeong organization: Soonchunhyang University |
| BookMark | eNp9kMtOwzAQRS1UJNrCD7CyxNrgVxxnWVW8pEpsYG05zqRNH06wXVD_Hpcidcdq7ozm3tGcCRr53gNCt4zeM0rLh8ioLjWhXBLKuFCkuEBjVpSCcK3VKGuhOVEVLa7QJMY1pTRrOUabGY5p3xxw7_GGfNvtBi_BQ7CpyxO7XfahS6sdTj0eAnyBTzitILcpQej8EnceL4MdVhiaLuGmi8l6B3gF-5B1584Z8RpdtnYb4eavTtHH0-P7_IUs3p5f57MFcYLJROqKSdCaSVe0Tqmq5q1VstG8ZqqV0AralLaBxnIlndRtWVcKnIam0pZVyokpujvlDqH_3ENMZt3vg88njeCFVJUuqMhb_LTlQh9jgNYModvZcDCMmiNUc4JqMlTzC9UU2SROpjgcv4dwjv7H9QPEw34T |
| Cites_doi | 10.1109/ICOA51614.2021.9442647 10.1016/j.imavis.2008.04.004 10.1145/1835804.1835836 10.1016/j.eswa.2017.10.043 10.14778/3594512.3594514 10.1109/JPROC.2018.2820300 10.1145/3524610.3527905 10.1016/j.patcog.2018.03.019 10.1109/TNNLS.2021.3070843 10.1016/j.patrec.2016.10.001 10.4018/978-1-61350-053-8.ch002 10.1016/j.patcog.2014.07.015 10.1016/B978-0-12-809633-8.20421-4 10.1109/FSKD.2012.6234133 10.1016/j.patrec.2018.05.002 10.14778/1687627.1687631 10.1007/978-3-319-18224-7_19 10.1016/j.eswa.2021.116095 10.1007/s41109-019-0195-3 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION |
| DOI | 10.1007/s10878-024-01236-5 |
| DatabaseName | Springer Nature OA Free Journals CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1573-2886 |
| ExternalDocumentID | 10_1007_s10878_024_01236_5 |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29K 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P9R PF0 PT4 PT5 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ M2P M7S PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c314t-b914e8814c5fc669b2fa64d82b16f4ef30d7adeda264c48f7b96ec8ed98a196c3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001372461100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1382-6905 |
| IngestDate | Sat Sep 27 04:21:05 EDT 2025 Sat Nov 29 04:54:50 EST 2025 Fri Feb 21 02:37:07 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Tottering Graph Heuristic algorithm - |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c314t-b914e8814c5fc669b2fa64d82b16f4ef30d7adeda264c48f7b96ec8ed98a196c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://link.springer.com/10.1007/s10878-024-01236-5 |
| PQID | 3254698503 |
| PQPubID | 2043856 |
| ParticipantIDs | proquest_journals_3254698503 crossref_primary_10_1007_s10878_024_01236_5 springer_journals_10_1007_s10878_024_01236_5 |
| PublicationCentury | 2000 |
| PublicationDate | 20250100 2025-01-00 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 1 year: 2025 text: 20250100 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Journal of combinatorial optimization |
| PublicationTitleAbbrev | J Comb Optim |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | 1236_CR18 C Piao (1236_CR15) 2023; 16 DB Blumenthal (1236_CR5) 2020; 134 L Jia (1236_CR12) 2022; 189 1236_CR19 A Fischer (1236_CR9) 2015; 48 K Gouda (1236_CR10) 2018; 80 S Bougleux (1236_CR7) 2017; 87 1236_CR6 K Riesen (1236_CR17) 2009; 27 Z Abu-Aisheh (1236_CR1) 2018; 94 1236_CR8 NM Kriege (1236_CR13) 2020; 5 1236_CR3 K Riesen (1236_CR16) 2009; 27 1236_CR4 S Ji (1236_CR11) 2021; 33 1236_CR23 P Zhang (1236_CR21) 2006 1236_CR22 1236_CR14 Z Zeng (1236_CR20) 2009; 2 T Adalı (1236_CR2) 2018; 106 |
| References_xml | – ident: 1236_CR14 doi: 10.1109/ICOA51614.2021.9442647 – volume: 27 start-page: 950 issue: 7 year: 2009 ident: 1236_CR16 publication-title: Image Vis Comput doi: 10.1016/j.imavis.2008.04.004 – ident: 1236_CR19 doi: 10.1145/1835804.1835836 – volume: 94 start-page: 41 year: 2018 ident: 1236_CR1 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.10.043 – volume: 16 start-page: 1817 issue: 8 year: 2023 ident: 1236_CR15 publication-title: Proc VLDB Endow doi: 10.14778/3594512.3594514 – volume: 106 start-page: 784 issue: 5 year: 2018 ident: 1236_CR2 publication-title: Proc IEEE doi: 10.1109/JPROC.2018.2820300 – volume: 27 start-page: 950 issue: 7 year: 2009 ident: 1236_CR17 publication-title: Image Vis Comput doi: 10.1016/j.imavis.2008.04.004 – ident: 1236_CR6 – ident: 1236_CR22 doi: 10.1145/3524610.3527905 – volume: 80 start-page: 210 year: 2018 ident: 1236_CR10 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2018.03.019 – volume: 33 start-page: 494 issue: 2 year: 2021 ident: 1236_CR11 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2021.3070843 – ident: 1236_CR3 – volume: 87 start-page: 38 year: 2017 ident: 1236_CR7 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2016.10.001 – ident: 1236_CR18 doi: 10.4018/978-1-61350-053-8.ch002 – volume: 48 start-page: 331 issue: 2 year: 2015 ident: 1236_CR9 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2014.07.015 – ident: 1236_CR4 doi: 10.1016/B978-0-12-809633-8.20421-4 – ident: 1236_CR23 doi: 10.1109/FSKD.2012.6234133 – start-page: 2 volume-title: Introduction to graph theory year: 2006 ident: 1236_CR21 – volume: 134 start-page: 46 year: 2020 ident: 1236_CR5 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2018.05.002 – volume: 2 start-page: 25 issue: 1 year: 2009 ident: 1236_CR20 publication-title: Proc VLDB Endow doi: 10.14778/1687627.1687631 – ident: 1236_CR8 doi: 10.1007/978-3-319-18224-7_19 – volume: 189 year: 2022 ident: 1236_CR12 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.116095 – volume: 5 start-page: 1 year: 2020 ident: 1236_CR13 publication-title: Appl Netw Sci doi: 10.1007/s41109-019-0195-3 |
| SSID | ssj0009054 |
| Score | 2.3562045 |
| Snippet | Graph edit distance is usually used for graph similarity checking due to its low information loss and flexibility advantages. However, graph edit distance... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 9 |
| SubjectTerms | Algorithms Approximation Combinatorics Convex and Discrete Geometry Graphs Heuristic Heuristic methods Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Nodes Operations Research/Decision Theory Optimization Theory of Computation |
| Title | A study on k-walk generation algorithm to prevent the tottering in graph edit distance heuristic algorithms |
| URI | https://link.springer.com/article/10.1007/s10878-024-01236-5 https://www.proquest.com/docview/3254698503 |
| Volume | 49 |
| WOSCitedRecordID | wos001372461100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Journals customDbUrl: eissn: 1573-2886 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009054 issn: 1382-6905 databaseCode: RSV dateStart: 19970301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ07T8MwEIAtKAww8EYUCvLABpYS20nssUJULFSIl7pFjmOXqiWtmhT-PraTkIJggNFKcoruzrlz7PsOgPOI0oRTJpCXRhRRqTTiiqSIE2HiDQ61p5lrNhH1-2ww4HdVUVhen3avtyTdl3qp2I1ZGiy2pyYwCVGwCtZMuGO2YcP9w3OD2vWCspWtyR3N2i-oSmV-lvE1HDU55rdtURdtetv_e88dsFVll7BbusMuWFHZHthcYg6a0e0nqDXfB-MudIBZOM3gGL2LyRgOHYja2guKyXA6HxUvr7CYwlkJe4LmaTO0RUBGHhxl0DGvoQmCBUxtNmrcCL6oRYmAbmTkB-Cpd_14dYOq_gtIEp8WKOE-VYz5VAZahiFPsBYhTRlO_FBTpYmxr0hVKkxSJSnTUcJDJZlKORNmYktyCFrZNFNHAJosVASeMosxrqiWgikc-Y5NJhKNedQGF7UZ4lmJ2YgboLJVaGwUGjuFxkEbdGpLxdWUy2Niyf6cBR5pg8vaMs3l36Ud_-32E7CBbQ9g9xumA1rFfKFOwbp8K0b5_My54gcjAdmS |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LT8MwDIAtXhJw4I0YDMiBG0TqI22TI0KgIWBCMNBuVZomYxp0aC3w90nSlgKCAxyjtlZlO7XTxJ8BDiJCEkYox04aEUyEVJhJP8XM5zreeKFyFLXNJqJul_b77LoqCsvr0-71lqT9Un8qdqOGBuuZUxOeH-JgGmaJjliGmH9ze9-gdp2gbGWrc0e99guqUpmfZXwNR02O-W1b1Eabs-X_vecKLFXZJTou3WEVpmS2BoufmIN6dPUBas3XYXSMLGAWjTM0wm_8cYQGFkRt7IX442A8GRYPT6gYo-cS9oT003poioC0PDTMkGVeIx0EC5SabFS7EXqQLyUCupGRb8Dd2WnvpIOr_gtY-C4pcMJcIil1iQiUCEOWeIqHJKVe4oaKSOVr-_JUplwnVYJQFSUslILKlFGuJ7bwN2EmG2dyC5DOQnngSL0YY5Iowan0IteyyXiiPBa14LA2Q_xcYjbiBqhsFBprhcZWoXHQgnZtqbiacnnsG7I_o4Hjt-Cotkxz-Xdp23-7fR_mO72ry_jyvHuxAwue6Qdsf8m0YaaYvMhdmBOvxTCf7Fm3fAdfHtx2 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT8MwDIAtXkJw4I0YDMiBG0T0kbbJcQImEDBN4qHdqjRNxjRop63A3ydJNzoQHBDHqI1V2YlsN_FngKOIkIQRyrGTRgQTIRVm0k8x87n2N16oHEVts4mo1aKdDmtPVfHb2-6TI8mypsFQmrLidJCq06nCN2rIsJ65QeH5IQ5mYZ6Yi_QmX797rLC7TlC2tdVxpM4Dg3HZzM8yvrqmKt78dkRqPU9z9f_fvAYr46gTNcplsg4zMtuA5SkWoR7dfgJcR5vQbyALnkV5hvr4nT_3UdcCqo0dEX_u5sNe8fSCihwNSggU0rP10BQHaXmolyHLwkbaORYoNVGqXl7oSb6WaOhKxmgLHpoX92eXeNyXAQvfJQVOmEskpS4RgRJhyBJP8ZCk1EvcUBGpfG13nsqU62BLEKqihIVSUJkyyvWGF_42zGV5JncA6eiUB47USRqTRAlOpRe5llnGE-WxqAbHE5PEgxK_EVegZaPQWCs0tgqNgxrUJ1aLx1txFPuG-M9o4Pg1OJlYqXr8u7Tdv71-CIvt82Z8c9W63oMlz7QJtn9q6jBXDF_lPiyIt6I3Gh7YFfoBNg7lWg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+study+on+k-walk+generation+algorithm+to+prevent+the+tottering+in+graph+edit+distance+heuristic+algorithms&rft.jtitle=Journal+of+combinatorial+optimization&rft.au=Yoon%2C+SeongCheol&rft.au=Seo%2C+Daehee&rft.au=Kim%2C+Su-Hyun&rft.au=Lee%2C+Im-Yeong&rft.date=2025-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1382-6905&rft.eissn=1573-2886&rft.volume=49&rft.issue=1&rft.spage=9&rft_id=info:doi/10.1007%2Fs10878-024-01236-5&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon |