Distributed Calculations with Algorithmic Skeletons for Heterogeneous Computing Environments
Contemporary HPC hardware typically provides several levels of parallelism, e.g. multiple nodes, each having multiple cores (possibly with vectorization) and accelerators. Efficiently programming such systems usually requires skills in combining several low-level frameworks such as MPI, OpenMP, and...
Saved in:
| Published in: | International journal of parallel programming Vol. 51; no. 2-3; pp. 172 - 185 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.06.2023
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0885-7458, 1573-7640 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Contemporary HPC hardware typically provides several levels of parallelism, e.g. multiple nodes, each having multiple cores (possibly with vectorization) and accelerators. Efficiently programming such systems usually requires skills in combining several low-level frameworks such as MPI, OpenMP, and CUDA. This overburdens programmers without substantial parallel programming skills. One way to overcome this problem and to abstract from details of parallel programming is to use algorithmic skeletons. In the present paper, we evaluate the multi-node, multi-CPU and multi-GPU implementation of the most essential skeletons Map, Reduce, and Zip. Our main contribution is a discussion of the efficiency of using multiple parallelization levels and the consideration of which fine-tune settings should be offered to the user. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0885-7458 1573-7640 |
| DOI: | 10.1007/s10766-022-00742-5 |