Stability of Neural Networks for Slightly Perturbed Training Data Sets
In learning models of artificial neural networks, that randomness comes from the distribution of the training data. We show individual observations do not affect excessively for a neutral network modeling, provided that it has adequate nodes on the hidden layer and proves that the empirical error of...
Uloženo v:
| Vydáno v: | Communications in statistics. Theory and methods Ročník 33; číslo 9; s. 2259 - 2270 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia, PA
Taylor & Francis Group
31.12.2004
Taylor & Francis |
| Témata: | |
| ISSN: | 0361-0926, 1532-415X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In learning models of artificial neural networks, that randomness comes from the distribution of the training data. We show individual observations do not affect excessively for a neutral network modeling, provided that it has adequate nodes on the hidden layer and proves that the empirical error of a neural network with p number of weights converges to the expected error when
where m is the size of the perturbed training data. |
|---|---|
| ISSN: | 0361-0926 1532-415X |
| DOI: | 10.1081/STA-200026629 |