Stability of Neural Networks for Slightly Perturbed Training Data Sets
In learning models of artificial neural networks, that randomness comes from the distribution of the training data. We show individual observations do not affect excessively for a neutral network modeling, provided that it has adequate nodes on the hidden layer and proves that the empirical error of...
Gespeichert in:
| Veröffentlicht in: | Communications in statistics. Theory and methods Jg. 33; H. 9; S. 2259 - 2270 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Philadelphia, PA
Taylor & Francis Group
31.12.2004
Taylor & Francis |
| Schlagworte: | |
| ISSN: | 0361-0926, 1532-415X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In learning models of artificial neural networks, that randomness comes from the distribution of the training data. We show individual observations do not affect excessively for a neutral network modeling, provided that it has adequate nodes on the hidden layer and proves that the empirical error of a neural network with p number of weights converges to the expected error when
where m is the size of the perturbed training data. |
|---|---|
| ISSN: | 0361-0926 1532-415X |
| DOI: | 10.1081/STA-200026629 |