ON THE CONVEXITY OF VALUE FUNCTIONS FOR A CERTAIN CLASS OF STOCHASTIC DYNAMIC PROGRAMMING PROBLEM
It is a common practice in stochastic dynamic programming problems to assume a priori that the value function is either concave or convex and later verify this assumption after the value function has been identified. It is often a difficult task to establish the concavity or convexity of the value f...
Uložené v:
| Vydané v: | Stochastic analysis and applications Ročník 20; číslo 4; s. 783 - 789 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Philadelphia, PA
Taylor & Francis Group
28.08.2002
Taylor & Francis |
| Predmet: | |
| ISSN: | 0736-2994, 1532-9356 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | It is a common practice in stochastic dynamic programming problems to assume a priori that the value function is either concave or convex and later verify this assumption after the value function has been identified. It is often a difficult task to establish the concavity or convexity of the value function directly. In this paper, we prove that the value function of a certain type of infinite horizon stochastic dynamic programming problem is convex. This type of value function arises frequently in economic modeling. |
|---|---|
| ISSN: | 0736-2994 1532-9356 |
| DOI: | 10.1081/SAP-120006107 |