An Enhanced Jacobi Precoder for Downlink Massive MIMO Systems

Linear precoding methods such as zero-forcing (ZF) are near optimal for downlink massive multi-user multiple input multiple output (MIMO) systems due to their asymptotic channel property. However, as the number of users increases, the computational complexity of obtaining the inverse matrix of the g...

Full description

Saved in:
Bibliographic Details
Published in:Computers, materials & continua Vol. 68; no. 1; pp. 137 - 148
Main Authors: Chan-Yeob, Park, Jae, Hyun-Ro, Jang, Jun-Yong, Hyoung-Kyu, Song
Format: Journal Article
Language:English
Published: Henderson Tech Science Press 01.01.2021
Subjects:
ISSN:1546-2226, 1546-2218, 1546-2226
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Linear precoding methods such as zero-forcing (ZF) are near optimal for downlink massive multi-user multiple input multiple output (MIMO) systems due to their asymptotic channel property. However, as the number of users increases, the computational complexity of obtaining the inverse matrix of the gram matrix increases. For solving the computational complexity problem, this paper proposes an improved Jacobi (JC)-based precoder to improve error performance of the conventional JC in the downlink massive MIMO systems. The conventional JC was studied for solving the high computational complexity of the ZF algorithm and was able to achieve parallel implementation. However, the conventional JC has poor error performance when the number of users increases, which means that the diagonal dominance component of the gram matrix is reduced. In this paper, the preconditioning method is proposed to improve the error performance. Before executing the JC, the condition number of the linear equation and spectrum radius of the iteration matrix are reduced by multiplying the preconditioning matrix of the linear equation. To further reduce the condition number of the linear equation, this paper proposes a polynomial expansion precondition matrix that supplements diagonal components. The results show that the proposed method provides better performance than other iterative methods and has similar performance to the ZF.
AbstractList Linear precoding methods such as zero-forcing (ZF) are near optimal for downlink massive multi-user multiple input multiple output (MIMO) systems due to their asymptotic channel property. However, as the number of users increases, the computational complexity of obtaining the inverse matrix of the gram matrix increases. For solving the computational complexity problem, this paper proposes an improved Jacobi (JC)-based precoder to improve error performance of the conventional JC in the downlink massive MIMO systems. The conventional JC was studied for solving the high computational complexity of the ZF algorithm and was able to achieve parallel implementation. However, the conventional JC has poor error performance when the number of users increases, which means that the diagonal dominance component of the gram matrix is reduced. In this paper, the preconditioning method is proposed to improve the error performance. Before executing the JC, the condition number of the linear equation and spectrum radius of the iteration matrix are reduced by multiplying the preconditioning matrix of the linear equation. To further reduce the condition number of the linear equation, this paper proposes a polynomial expansion precondition matrix that supplements diagonal components. The results show that the proposed method provides better performance than other iterative methods and has similar performance to the ZF.
Author Jae, Hyun-Ro
Jang, Jun-Yong
Hyoung-Kyu, Song
Chan-Yeob, Park
Author_xml – sequence: 1
  givenname: Park
  surname: Chan-Yeob
  fullname: Chan-Yeob, Park
– sequence: 2
  givenname: Hyun-Ro
  surname: Jae
  fullname: Jae, Hyun-Ro
– sequence: 3
  givenname: Jun-Yong
  surname: Jang
  fullname: Jang, Jun-Yong
– sequence: 4
  givenname: Song
  surname: Hyoung-Kyu
  fullname: Hyoung-Kyu, Song
BookMark eNp1kM9LwzAYhoNMcJvePQY8d-ZHmyYHD2NOnWxMUM8hTVLMbJOZdMr-e6vzIIKn9zu8z_fCMwIDH7wF4ByjCSUM5Ze61ROCCJ4gzDDiR2CIi5xlhBA2-HWfgFFKG4QoowINwdXUw7l_UV5bA--VDpWDD9HqYGyEdYjwOnz4xvlXuFIpuXcLV4vVGj7uU2fbdAqOa9Uke_aTY_B8M3-a3WXL9e1iNl1mmmLaZZYTW2mBSU5IWRqiqGFlZQUSjJuy1Kampq6IqHKljRKF0Jobgw1XtLCFqukYXBz-bmN429nUyU3YRd9PSlKgkqOcF7hvsUNLx5BStLXUrlOdC76LyjUSI_mtSvaq5JcqeVDVg-gPuI2uVXH_P_IJ7lJtCg
CitedBy_id crossref_primary_10_1049_2023_8887060
crossref_primary_10_32604_cmc_2022_020777
Cites_doi 10.1109/LCOMM.2016.2525807
10.1109/JSYST.2017.2776401
10.1109/MCOM.2014.6736761
10.4218/etrij.17.0116.0732
10.1109/JSTSP.2014.2317671
10.1109/LCOMM.2019.2897798
10.1109/LCOMM.2015.2504506
10.1109/MCOM.2016.7402270
10.1109/ACCESS.2019.2934090
10.1109/MSP.2011.2178495
10.15325/BLTJ.2015.2407793
10.1109/COMST.2019.2935810
10.1049/el.2017.3329
ContentType Journal Article
Copyright 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
8BQ
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
JG9
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.32604/cmc.2021.016108
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1546-2226
EndPage 148
ExternalDocumentID 10_32604_cmc_2021_016108
GroupedDBID AAFWJ
AAYXX
ACIWK
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
J9A
OK1
P2P
PHGZM
PHGZT
PIMPY
RTS
TUS
7SC
7SR
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c313t-e82ebc91242277d2a3d67be90968d77cdf3dfb29b4acda959cc8dd1d8a35e5af3
IEDL.DBID BENPR
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000632822900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1546-2226
1546-2218
IngestDate Sun Nov 09 07:42:41 EST 2025
Tue Nov 18 21:19:36 EST 2025
Sat Nov 29 03:13:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-e82ebc91242277d2a3d67be90968d77cdf3dfb29b4acda959cc8dd1d8a35e5af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2507804851?pq-origsite=%requestingapplication%
PQID 2507804851
PQPubID 2048737
PageCount 12
ParticipantIDs proquest_journals_2507804851
crossref_citationtrail_10_32604_cmc_2021_016108
crossref_primary_10_32604_cmc_2021_016108
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computers, materials & continua
PublicationYear 2021
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Kang (ref14) 2017; 39
Rusek (ref1) 2013; 30
Pyzara (ref20) 2011
Gustafsson (ref9) 2017
Lu (ref3) 2014; 8
Larsson (ref2) 2014; 52
Zhu (ref10) 2015
Jin (ref21) 2019; 23
Ruperee (ref22) 2019; 13
Xie (ref13) 2016; 20
Albreem (ref6) 2019; 21
Lee (ref15) 2017; 53
Gao (ref12) 2014
Ro (ref19) 2019; 7
Björnson (ref5) 2016; 54
Zhang (ref7) 2016
Fatema (ref8) 2018; 12
Zhang (ref18) 2018
Marzetta (ref4) 2015; 20
Gao (ref11) 2015
Qin (ref17) 2016; 20
Song (ref16) 2016
References_xml – volume: 20
  start-page: 744
  year: 2016
  ident: ref13
  article-title: Low-complexity SSOR-based precoding for massive MIMO systems
  publication-title: IEEE Communications Letters
  doi: 10.1109/LCOMM.2016.2525807
– volume: 12
  start-page: 3920
  year: 2018
  ident: ref8
  article-title: Massive MIMO linear precoding: A survey
  publication-title: IEEE Systems Journal
  doi: 10.1109/JSYST.2017.2776401
– volume: 52
  start-page: 186
  year: 2014
  ident: ref2
  article-title: Massive MIMO for next generation wireless systems
  publication-title: IEEE Communications Magazine
  doi: 10.1109/MCOM.2014.6736761
– volume: 39
  start-page: 326
  year: 2017
  ident: ref14
  article-title: Low-complexity massive MIMO detectors based on Richardson method
  publication-title: Etri Journal
  doi: 10.4218/etrij.17.0116.0732
– volume: 8
  start-page: 742
  year: 2014
  ident: ref3
  article-title: An overview of massive MIMO: Benefits and challenges
  publication-title: IEEE Journal of Selected Topics in Signal Processing
  doi: 10.1109/JSTSP.2014.2317671
– start-page: 203
  year: 2018
  ident: ref18
  article-title: Adaptive damped Jacobi detector and architecture for massive MIMO uplink
– volume: 23
  start-page: 748
  year: 2019
  ident: ref21
  article-title: A low complexity signal detection scheme based on improved newton iteration for massive MIMO systems
  publication-title: IEEE Communications Letters
  doi: 10.1109/LCOMM.2019.2897798
– volume: 20
  start-page: 276
  year: 2016
  ident: ref17
  article-title: A near-optimal detection scheme based on joint steepest descent and Jacobi method for uplink massive MIMO systems
  publication-title: IEEE Communications Letters
  doi: 10.1109/LCOMM.2015.2504506
– start-page: 1763
  year: 2015
  ident: ref10
  article-title: On the matrix inversion approximation based on Neumann series in massive MIMO systems
– start-page: 62
  year: 2017
  ident: ref9
  article-title: Approximate Neumann series or exact matrix inversion for massive MIMO?
– volume: 54
  start-page: 114
  year: 2016
  ident: ref5
  article-title: Massive MIMO: Ten myths and one critical question
  publication-title: IEEE Communications Magazine
  doi: 10.1109/MCOM.2016.7402270
– volume: 7
  start-page: 112318
  year: 2019
  ident: ref19
  article-title: An efficient precoding method for improved downlink massive MIMO system
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2934090
– start-page: 1
  year: 2016
  ident: ref16
  article-title: Joint conjugate gradient and Jacobi iteration based low complexity precoding for massive MIMO systems
– start-page: 1577
  year: 2015
  ident: ref11
  article-title: Capacity-approaching linear precoding with low-complexity for large-scale MIMO systems
– start-page: 459
  year: 2011
  ident: ref20
  article-title: The influence of a matrix condition number on iterative methods’ convergence
– volume: 30
  start-page: 40
  year: 2013
  ident: ref1
  article-title: Scaling up MIMO: Opportunities and challenges with very large arrays
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2011.2178495
– volume: 20
  start-page: 11
  year: 2015
  ident: ref4
  article-title: Massive MIMO: An introduction
  publication-title: Bell Labs Technical Journal
  doi: 10.15325/BLTJ.2015.2407793
– volume: 21
  start-page: 3109
  year: 2019
  ident: ref6
  article-title: Massive MIMO detection techniques: A survey
  publication-title: IEEE Communications Surveys & Tutorials
  doi: 10.1109/COMST.2019.2935810
– start-page: 3291
  year: 2014
  ident: ref12
  article-title: Matrix inversion-less signal detection using SOR method for uplink large-scale MIMO systems
– volume: 53
  start-page: 1552
  year: 2017
  ident: ref15
  article-title: Decision-aided Jacobi iteration for signal detection in massive MIMO systems
  publication-title: Electronics Letters
  doi: 10.1049/el.2017.3329
– volume: 13
  start-page: 4390
  year: 2019
  ident: ref22
  article-title: Time shifted pilot signal transmission with pilot hopping to improve the uplink performance of massive MIMO systems for next generation network
  publication-title: KSII Transactions on Internet and Information Systems
– start-page: 1
  year: 2016
  ident: ref7
  article-title: Reviews of recent progress on low-complexity linear detection via iterative algorithms for massive MIMO systems
SSID ssj0036390
Score 2.2032943
Snippet Linear precoding methods such as zero-forcing (ZF) are near optimal for downlink massive multi-user multiple input multiple output (MIMO) systems due to their...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 137
SubjectTerms Algorithms
Asymptotic properties
Complexity
Downlinking
Errors
Iterative methods
Linear equations
Mathematical analysis
Matrix methods
MIMO (control systems)
Polynomials
Preconditioning
Title An Enhanced Jacobi Precoder for Downlink Massive MIMO Systems
URI https://www.proquest.com/docview/2507804851
Volume 68
WOSCitedRecordID wos000632822900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: BENPR
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: PIMPY
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagZWChPEWhIA8sDKGtnTTOhHi0okgpEQKpTJFfEZUgLW3h93OXODwWFqYMeSi6s-_uO9vfR8iJFSG3mRKeb_BITuArT1jsiFnJDO8aEWpTiE2Eo5EYj6PENdwWbltlFROLQG2mGnvkbUjVyJUDBcL57M1D1ShcXXUSGqukjkxlMM7rl_1Rcl_FYg75tzgSGfg9j0E2KxcqoWTp-G39ihSGrHuGVQ_KS_5MTL_jcpFsBo3__uYm2XBlJr0ox8UWWbH5NmlUEg7UzegdAvCf9vPnYhsAvYXoqCY0QZBs4CmoZ-k1kukDXqUxVNkQGWk8jO-o4znfJY-D_sPVjecUFTzNu3zpWcGs0hHkdMbC0DDJTS9UNgIcI0wIbsm4yRSLlC-1kVEQaS2MAY9JHthAZnyP1PJpbvdxS5TtSKkC2c2UD8aXJouYtjrqAeICWNkk7cqcqXZ046h68ZIC7CgckIIDUnRAWjqgSU6_3piVVBt_PNuqzJ-6SbdIv21_8PftQ7KO3yo7KS1SW87f7RFZ0x_LyWJ-7MYQXJNhnDx9AtWc0AY
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V25TsNAEB2FgAQNNyKcW0BBYZLs2rFdIBRxiAAOKUCCyuxlEQnMkQDip_hGZnxwNHQU1F6v1n6jeTOzu_MANmzgC5uowHENXcnxXOUElipiVnIjmibwtcnEJvxuN7i8DHsVeC_vwtCxytInZo7a3GuqkdeRqqlXDgYIuw-PDqlG0e5qKaGRm8WJfXvFlG2w09lHfDc5Pzw43ztyClUBR4umGDo24FbpEHmNc983XArT8pUNMZYPjI9LS4RJFA-VK7WRoRdqHRiDq5bCs55MBM47AqMuGXsVRnudqHdV-n6BfJ9dwfTclsORPfONUQyRGm5d31HLRN7cpiiL5Cy_E-FPHsjI7XDqv_2WaZgswmjWzu1-Bio2nYWpUqKCFR5rDnbaKTtIb7JjDuwYvb_qsx4VAQyOwnid7ZNYAObjLMIsAj0_izrRGSv6uM_DxZ98xAJU0_vULtKRL9uQUnmymSgXs2RpkpBrq8MWZpSYNtegXsIX66KdOql63MaYVmWAxwh4TIDHOeA12Pp84yFvJfLL2JUS7rhwKoP4C-ul3x-vw_jReXQan3a6J8swQfPmVaMVqA6fnu0qjOmXYX_wtFbYL4Prv7aND1g1Lr8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Enhanced+Jacobi+Precoder+for+Downlink+Massive+MIMO+Systems&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Chan-Yeob%2C+Park&rft.au=Jae%2C+Hyun-Ro&rft.au=Jang%2C+Jun-Yong&rft.au=Hyoung-Kyu%2C+Song&rft.date=2021-01-01&rft.issn=1546-2226&rft.volume=68&rft.issue=1&rft.spage=137&rft.epage=148&rft_id=info:doi/10.32604%2Fcmc.2021.016108&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2021_016108
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon