Reinforcement learning-based funnel control and privacy preservation for multi-agent systems with input dead-zone

This paper investigates the privacy-preserving protocol and reinforcement learning-based funnel controller design of multi-agent systems subject to input dead-zone constraints. An adaptive funnel controller is formulated to guarantee that the tracking errors keep within prescribed boundaries. The un...

Full description

Saved in:
Bibliographic Details
Published in:Neural networks Vol. 195; p. 108238
Main Authors: Huang, Jiaxin, Liu, Xiaoyang, Shen, Sikai, Yu, Wenwu
Format: Journal Article
Language:English
Published: United States Elsevier Ltd 01.03.2026
Subjects:
ISSN:0893-6080, 1879-2782, 1879-2782
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper investigates the privacy-preserving protocol and reinforcement learning-based funnel controller design of multi-agent systems subject to input dead-zone constraints. An adaptive funnel controller is formulated to guarantee that the tracking errors keep within prescribed boundaries. The uncharacterized system nonlinearities are approximated by a fuzzy function embedded in an actor-critic reinforcement learning paradigm. To address input constraints and alleviate communication burden, an event-triggered scheme is introduced to update control signals efficiently. Additionally, a secure data-exchange mechanism in light of Paillier cryptographic scheme is designed to safeguard the privacy of state information during transmission. Two comprehensive simulations are performed to validate the feasibility and performance of the developed strategy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0893-6080
1879-2782
1879-2782
DOI:10.1016/j.neunet.2025.108238