Optimized Weighted Ensemble Using Dipper Throated Optimization Algorithm in Metamaterial Antenna

Metamaterial Antennas are a type of antenna that uses metamaterial to enhance performance. The bandwidth restriction associated with small antennas can be solved using metamaterial antennas. Machine learning is gaining popularity as a way to improve solutions in a range of fields. Machine learning a...

Full description

Saved in:
Bibliographic Details
Published in:Computers, materials & continua Vol. 73; no. 3; pp. 5771 - 5788
Main Authors: Sami Khafaga, Doaa, M. El-kenawy, El-Sayed, Khalid Karim, Faten, Alshetewi, Sameer, Ibrahim, Abdelhameed, A. Abdelhamid, Abdelaziz
Format: Journal Article
Language:English
Published: Henderson Tech Science Press 2022
Subjects:
ISSN:1546-2226, 1546-2218, 1546-2226
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Metamaterial Antennas are a type of antenna that uses metamaterial to enhance performance. The bandwidth restriction associated with small antennas can be solved using metamaterial antennas. Machine learning is gaining popularity as a way to improve solutions in a range of fields. Machine learning approaches are currently a big part of current research, and they’re likely to be huge in the future. The model utilized determines the accuracy of the prediction in large part. The goal of this paper is to develop an optimized ensemble model for forecasting the metamaterial antenna’s bandwidth and gain. The basic models employed in the developed ensemble are Support Vector Regression (SVR), K-Nearest Regression (KNR), Multi-Layer Perceptron (MLP), Decision Trees (DT), and Random Forest (RF). The percentages of contribution of these models in the ensemble model are weighted and optimized using the dipper throated optimization (DTO) algorithm. To choose the best features from the dataset, the binary (bDTO) algorithm is exploited. The proposed ensemble model is compared to the base models and results are recorded and analyzed statistically. In addition, two other ensembles are incorporated in the conducted experiments for comparison. These ensembles are average ensemble and K-nearest neighbors (KNN)-based ensemble. The comparison is performed in terms of eleven evaluation criteria. The evaluation results confirmed the superiority of the proposed model when compared with the basic models and the other ensemble models.
AbstractList Metamaterial Antennas are a type of antenna that uses metamaterial to enhance performance. The bandwidth restriction associated with small antennas can be solved using metamaterial antennas. Machine learning is gaining popularity as a way to improve solutions in a range of fields. Machine learning approaches are currently a big part of current research, and they’re likely to be huge in the future. The model utilized determines the accuracy of the prediction in large part. The goal of this paper is to develop an optimized ensemble model for forecasting the metamaterial antenna’s bandwidth and gain. The basic models employed in the developed ensemble are Support Vector Regression (SVR), K-Nearest Regression (KNR), Multi-Layer Perceptron (MLP), Decision Trees (DT), and Random Forest (RF). The percentages of contribution of these models in the ensemble model are weighted and optimized using the dipper throated optimization (DTO) algorithm. To choose the best features from the dataset, the binary (bDTO) algorithm is exploited. The proposed ensemble model is compared to the base models and results are recorded and analyzed statistically. In addition, two other ensembles are incorporated in the conducted experiments for comparison. These ensembles are average ensemble and K-nearest neighbors (KNN)-based ensemble. The comparison is performed in terms of eleven evaluation criteria. The evaluation results confirmed the superiority of the proposed model when compared with the basic models and the other ensemble models.
Author Alshetewi, Sameer
Ibrahim, Abdelhameed
Sami Khafaga, Doaa
M. El-kenawy, El-Sayed
Khalid Karim, Faten
A. Abdelhamid, Abdelaziz
Author_xml – sequence: 1
  givenname: Doaa
  surname: Sami Khafaga
  fullname: Sami Khafaga, Doaa
– sequence: 2
  givenname: El-Sayed
  surname: M. El-kenawy
  fullname: M. El-kenawy, El-Sayed
– sequence: 3
  givenname: Faten
  surname: Khalid Karim
  fullname: Khalid Karim, Faten
– sequence: 4
  givenname: Sameer
  surname: Alshetewi
  fullname: Alshetewi, Sameer
– sequence: 5
  givenname: Abdelhameed
  surname: Ibrahim
  fullname: Ibrahim, Abdelhameed
– sequence: 6
  givenname: Abdelaziz
  surname: A. Abdelhamid
  fullname: A. Abdelhamid, Abdelaziz
BookMark eNp1kLtPwzAQxi1UJNrCzmiJOcWPxMZjVcpDKurSitE4jtO6SpxguwP89biPASGhG-6T7vvudL8RGLjOGQBuMZpQwlB-r1s9IYiQCaKEEHEBhrjIWZY0G_zSV2AUwg4hyqhAQ_Cx7KNt7bep4Luxm21MYu6CacvGwHWwbgMfbd8bD1db36nD-JxQ0XYOTptN523cttA6-GaiapPHW9XAqYvGOXUNLmvVBHNz7mOwfpqvZi_ZYvn8OpsuMk0xjVmJK1RySrDQjPIixwTniitUV7QWuuQ1FrWmDKEHhKuyopxXilPNiRBFjUhJx-DutLf33efehCh33d67dFISJlIVLM-Ti51c2ncheFNLbePxk-iVbSRG8khTJpryQFOeaKYg-hPsvW2V__o_8gMgy3nq
CitedBy_id crossref_primary_10_3389_fenrg_2024_1391085
crossref_primary_10_1063_5_0208862
crossref_primary_10_1007_s41060_024_00640_8
crossref_primary_10_3389_fenrg_2023_1172176
crossref_primary_10_1038_s41598_025_92187_2
crossref_primary_10_1016_j_eswa_2024_123362
crossref_primary_10_1007_s00521_024_09608_y
Cites_doi 10.1109/ACCESS.2022.3172954
10.1109/ACCESS.2022.3166901
10.1109/ACCESS.2021.3083593
10.1109/ACCESS.2020.2990828
10.1109/ACCESS.2020.3028012
10.1088/1757-899X/1070/1/012086
10.32604/cmc.2021.015843
10.1109/ACCESS.2020.3007336
10.1007/s11277-020-07324-z
10.1109/ACCESS.2021.3106233
10.32604/cmc.2021.019114
10.32604/cmc.2022.027653
10.3390/e21050471
10.1109/ACCESS.2021.3111408
10.32604/cmc.2022.025739
10.32604/cmc.2021.018179
10.1007/s11760-017-1212-6
10.1109/ACCESS.2021.3061058
10.1109/ACCESS.2020.3001151
10.32604/cmc.2022.026026
10.1109/ACCESS.2020.3015892
10.1109/ACCESS.2020.3013698
ContentType Journal Article
Copyright 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
8BQ
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
JG9
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.32604/cmc.2022.032229
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Databases
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1546-2226
EndPage 5788
ExternalDocumentID 10_32604_cmc_2022_032229
GroupedDBID AAFWJ
AAYXX
ACIWK
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
J9A
OK1
P2P
PHGZM
PHGZT
PIMPY
RTS
TUS
7SC
7SR
8BQ
8FD
ABUWG
AZQEC
COVID
DWQXO
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c313t-b1d0b73219c637541214a7a0fd3f9cb7f19fc3600801dbd377da73c72995f02b3
IEDL.DBID BENPR
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000864725100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1546-2226
1546-2218
IngestDate Sun Nov 30 04:19:58 EST 2025
Sat Nov 29 03:13:25 EST 2025
Tue Nov 18 21:24:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-b1d0b73219c637541214a7a0fd3f9cb7f19fc3600801dbd377da73c72995f02b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2696965644?pq-origsite=%requestingapplication%
PQID 2696965644
PQPubID 2048737
PageCount 18
ParticipantIDs proquest_journals_2696965644
crossref_citationtrail_10_32604_cmc_2022_032229
crossref_primary_10_32604_cmc_2022_032229
PublicationCentury 2000
PublicationDate 2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computers, materials & continua
PublicationYear 2022
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Eid (ref16) 2021
Ghoneim (ref24) 2021; 9
El-kenawy (ref9) 2021; 69
El-Kenawy (ref17) 2021; 9
Naktong (ref8) 2021; 68
Ibrahim (ref22) 2021; 9
Abdelhamid (ref6) 2022; 10
Salamai (ref25) 2021; 69
Ibrahim (ref13) 2020; 8
El-Kenawy (ref12) 2020; 8
Ibrahim (ref26) 2018; 12
Fouad (ref10) 2020; 8
Kurniawati (ref20) 2020
Abdelhamid (ref18) 2022; 72
Suganthi (ref1) 2021; 1070
El-Kenawy (ref23) 2022; 10
El-Kenawy (ref11) 2020; 8
El-Kenawy (ref21) 2021; 9
ref28
Gaber (ref27) 2015
Misilmani (ref3) 2019
Lin (ref19) 2019; 21
Abdelhamid (ref5) 2022; 73
Geetharamani (ref7) 2020; 113
Ibrahim (ref15) 2020
Sun (ref4) 2018; 6
Ibrahim (ref14) 2020; 8
Alibakhshikenari (ref2) 2020; 8
Takieldeen (ref29) 2022; 72
References_xml – volume: 10
  start-page: 49265
  year: 2022
  ident: ref6
  article-title: Robust speech emotion recognition using CNN+LSTM based on stochastic fractal search optimization algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3172954
– volume: 10
  start-page: 40536
  year: 2022
  ident: ref23
  article-title: Novel meta-heuristic algorithm for feature selection, unconstrained functions and engineering problems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3166901
– start-page: 1
  year: 2021
  ident: ref16
  article-title: A binary sine cosine-modified whale optimization algorithm for feature selection
– start-page: 174
  year: 2020
  ident: ref20
  article-title: Random forest regression for predicting metamaterial antenna parameters
– volume: 9
  start-page: 78324
  year: 2021
  ident: ref24
  article-title: Adaptive dynamic meta-heuristics for feature selection and classification in diagnostic accuracy of transformer faults
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3083593
– volume: 8
  start-page: 81747
  year: 2020
  ident: ref14
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2990828
– start-page: 600
  year: 2019
  ident: ref3
  article-title: Machine learning in antenna design: An overview on machine learning concept and algorithms
– volume: 8
  start-page: 179317
  year: 2020
  ident: ref11
  article-title: Novel feature selection and voting classifier algorithms for COVID-19 classification in CT images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3028012
– volume: 1070
  start-page: 12086
  year: 2021
  ident: ref1
  article-title: Survey on metamaterial antennas
  publication-title: IOP Conference Series: Materials Science and Engineering
  doi: 10.1088/1757-899X/1070/1/012086
– volume: 68
  start-page: 1731
  year: 2021
  ident: ref8
  article-title: Resonator rectenna design based on metamaterials for low-RF energy harvesting
  publication-title: Computers, Materials & Continua
  doi: 10.32604/cmc.2021.015843
– volume: 8
  start-page: 122121
  year: 2020
  ident: ref13
  article-title: Breast cancer segmentation from thermal images based on chaotic salp swarm algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3007336
– start-page: 153
  year: 2020
  ident: ref15
  article-title: Chaotic harris hawks optimization for unconstrained function optimization
– volume: 113
  start-page: 2289
  year: 2020
  ident: ref7
  article-title: Design of metamaterial antenna for 2.4 GHz WiFi applications
  publication-title: Wireless Personal Communications
  doi: 10.1007/s11277-020-07324-z
– start-page: 91
  year: 2015
  ident: ref27
  article-title: Human thermal face recognition based on random linear oracle (RLO) ensembles
– volume: 9
  start-page: 115750
  year: 2021
  ident: ref21
  article-title: Advanced ensemble model for solar radiation forecasting using sine cosine algorithm and Newton’s laws
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3106233
– volume: 69
  start-page: 2983
  year: 2021
  ident: ref9
  article-title: Advance artificial intelligence technique for designing double T-shaped monopole antenna
  publication-title: Computers, Materials & Continua
  doi: 10.32604/cmc.2021.019114
– volume: 73
  start-page: 917
  year: 2022
  ident: ref5
  article-title: Optimized two-level ensemble model for predicting the parameters of metamaterial antenna
  publication-title: Computers, Materials & Continua
  doi: 10.32604/cmc.2022.027653
– volume: 21
  start-page: 471
  year: 2019
  ident: ref19
  article-title: Support vector machine-based transmit antenna allocation for multiuser communication systems
  publication-title: Entropy
  doi: 10.3390/e21050471
– volume: 9
  start-page: 1
  year: 2021
  ident: ref22
  article-title: Wind speed ensemble forecasting based on deep learning using adaptive dynamic optimization algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3111408
– volume: 72
  start-page: 2305
  year: 2022
  ident: ref18
  article-title: Robust prediction of the bandwidth of metamaterial antenna using deep learning
  publication-title: Computers, Materials & Continua
  doi: 10.32604/cmc.2022.025739
– volume: 69
  start-page: 3749
  year: 2021
  ident: ref25
  article-title: Dynamic voting classifier for risk identification in supply chain 4. 0
  publication-title: Computers, Materials & Continua
  doi: 10.32604/cmc.2021.018179
– volume: 12
  start-page: 711
  year: 2018
  ident: ref26
  article-title: Optimized superpixel and AdaBoost classifier for human thermal face recognition
  publication-title: Signal Image and Video Processing
  doi: 10.1007/s11760-017-1212-6
– ident: ref28
– volume: 9
  start-page: 36019
  year: 2021
  ident: ref17
  article-title: Advanced meta-heuristics, convolutional neural networks, and feature selectors for efficient COVID-19 X-ray chest image classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3061058
– volume: 8
  start-page: 107635
  year: 2020
  ident: ref12
  article-title: Mbgwo-SFS: Modified binary grey wolf optimizer based on stochastic fractal search for feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3001151
– volume: 72
  start-page: 1465
  year: 2022
  ident: ref29
  article-title: Dipper throated optimization algorithm for unconstrained function and feature selection
  publication-title: Computers, Materials & Continua
  doi: 10.32604/cmc.2022.026026
– volume: 8
  start-page: 148378
  year: 2020
  ident: ref10
  article-title: Dynamic group-based cooperative optimization algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3015892
– volume: 6
  start-page: 2925
  year: 2018
  ident: ref4
  article-title: An overview of metamaterials and their achievements in wireless power transfer
  publication-title: Journal of Materials Chemistry
– volume: 8
  start-page: 144778
  year: 2020
  ident: ref2
  article-title: A comprehensive survey of metamaterial transmission-line based antennas: Design, challenges, and applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3013698
SSID ssj0036390
Score 2.3482816
Snippet Metamaterial Antennas are a type of antenna that uses metamaterial to enhance performance. The bandwidth restriction associated with small antennas can be...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 5771
SubjectTerms Algorithms
Antennas
Bandwidths
Decision trees
Machine learning
Metamaterials
Multilayer perceptrons
Multilayers
Optimization
Support vector machines
Title Optimized Weighted Ensemble Using Dipper Throated Optimization Algorithm in Metamaterial Antenna
URI https://www.proquest.com/docview/2696965644
Volume 73
WOSCitedRecordID wos000864725100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: BENPR
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: PIMPY
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMrDwRjwK8sDCYJrETt1MqEARSFAqxHMKfgUqtWlpAwO_nrPjgFhYmBLJcRLlO999vrvcIbQvpEgyISRhMlaEiYyShLYUMYxpsGZZwl2g_f6Sd7utx8ek5x1uU59WWelEp6j1SFkfeSNq2jouMZjvo_EbsV2jbHTVt9CYRTVbqQzkvHbc6fZuKl1Mwf66XyJj1iQRWLMyUAmUJWANNbQlDKPoMLDRhuS3Yfqtl52xOVv672suo0VPM3G7lIsVNGPyVbRUtXDAfkWvoedrUBnD_qfR-ME5SeGkk0_NUA4MdukE-LQ_HsOU29fJSNhhP8MhituDF3h68TrE_RxfmUIAAXYyjds2Nz4X6-jurHN7ck580wWiaEgLIkMdSE5BkammbY8bRiETXASZBuCU5FmYZIo2LdMMtdSUcy04VcDRkzgLIkk30Fw-ys0mwjFwL9ay3eIyIBGws9NUxIryFjMGeKHaQo3qi6fKVyS3jTEGKexMHEYpYJRajNISoy108D1jXFbj-OPaeoVQ6tflNP2BZ_vv4R20YO9VOlvqaK6YvJtdNK8-iv50sufFDI69i6ve0xcn5dx1
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07b9swED6kToFmadJHkLR5cGiHDqwlkTKtISiMPBAjtuvBbdNJ4UuJAVt2bDVB-qP6G3ukpAZZsmXoJoAiIYof7_vII-8APkglk0xKRbmKNeUyYzRhbU0t5wbZLEuEd7R_74nBoH1-ngxX4E99F8Ydq6xtojfUZqbdHnkzark4LjHS95f5NXVZo5x3tU6hUcLizN7d4pJtedA9wvH9GEUnx6PDU1plFaCahaygKjSBEgxnqm65_K9hFHIpZJAZ_DKtRBYmmWYtJ6VCowwTwkjBNIrQJM6CSDFs9xmscgf2BqwOu_3hz9r2M-R7fwUz5i0aIXuWjlGUSAFv6qkLmRhFnwPn3UgeEuFDHvDkdrL-v_2WDXhZyWjSKXH_ClZs_hrW6xQVpLJYb-DiK5rE6fi3NeSH3wTGh-N8aadqYok_LkGOxvM5VhldLWbSFVc1PGJJZ3KJvS2upmSck74tJAp8P2dJx539z-Vb-PYk_dyERj7L7RaQGLUlb7tseBmKJFy5GiZjzUSbW4u6V29Dsx7hVFcR113ij0mKKy-PiRQxkTpMpCUmtuHTvxrzMtrII-_u1IhIK7uzTO_h8O7x4n14cTrq99Jed3D2HtZcu-XG0g40isUvuwvP9U0xXi72KogTuHhq-PwFgnQ2RQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+Weighted+Ensemble+Using+Dipper+Throated+Optimization+Algorithm+in+Metamaterial+Antenna&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Sami+Khafaga%2C+Doaa&rft.au=M.+El-kenawy%2C+El-Sayed&rft.au=Khalid+Karim%2C+Faten&rft.au=Alshetewi%2C+Sameer&rft.date=2022&rft.issn=1546-2226&rft.volume=73&rft.issue=3&rft.spage=5771&rft.epage=5788&rft_id=info:doi/10.32604%2Fcmc.2022.032229&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2022_032229
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon