Optimized Weighted Ensemble Using Dipper Throated Optimization Algorithm in Metamaterial Antenna
Metamaterial Antennas are a type of antenna that uses metamaterial to enhance performance. The bandwidth restriction associated with small antennas can be solved using metamaterial antennas. Machine learning is gaining popularity as a way to improve solutions in a range of fields. Machine learning a...
Saved in:
| Published in: | Computers, materials & continua Vol. 73; no. 3; pp. 5771 - 5788 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Henderson
Tech Science Press
2022
|
| Subjects: | |
| ISSN: | 1546-2226, 1546-2218, 1546-2226 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Metamaterial Antennas are a type of antenna that uses metamaterial to enhance performance. The bandwidth restriction associated with small antennas can be solved using metamaterial antennas. Machine learning is gaining popularity as a way to improve solutions in a range of fields. Machine learning approaches are currently a big part of current research, and they’re likely to be huge in the future. The model utilized determines the accuracy of the prediction in large part. The goal of this paper is to develop an optimized ensemble model for forecasting the metamaterial antenna’s bandwidth and gain. The basic models employed in the developed ensemble are Support Vector Regression (SVR), K-Nearest Regression (KNR), Multi-Layer Perceptron (MLP), Decision Trees (DT), and Random Forest (RF). The percentages of contribution of these models in the ensemble model are weighted and optimized using the dipper throated optimization (DTO) algorithm. To choose the best features from the dataset, the binary (bDTO) algorithm is exploited. The proposed ensemble model is compared to the base models and results are recorded and analyzed statistically. In addition, two other ensembles are incorporated in the conducted experiments for comparison. These ensembles are average ensemble and K-nearest neighbors (KNN)-based ensemble. The comparison is performed in terms of eleven evaluation criteria. The evaluation results confirmed the superiority of the proposed model when compared with the basic models and the other ensemble models. |
|---|---|
| AbstractList | Metamaterial Antennas are a type of antenna that uses metamaterial to enhance performance. The bandwidth restriction associated with small antennas can be solved using metamaterial antennas. Machine learning is gaining popularity as a way to improve solutions in a range of fields. Machine learning approaches are currently a big part of current research, and they’re likely to be huge in the future. The model utilized determines the accuracy of the prediction in large part. The goal of this paper is to develop an optimized ensemble model for forecasting the metamaterial antenna’s bandwidth and gain. The basic models employed in the developed ensemble are Support Vector Regression (SVR), K-Nearest Regression (KNR), Multi-Layer Perceptron (MLP), Decision Trees (DT), and Random Forest (RF). The percentages of contribution of these models in the ensemble model are weighted and optimized using the dipper throated optimization (DTO) algorithm. To choose the best features from the dataset, the binary (bDTO) algorithm is exploited. The proposed ensemble model is compared to the base models and results are recorded and analyzed statistically. In addition, two other ensembles are incorporated in the conducted experiments for comparison. These ensembles are average ensemble and K-nearest neighbors (KNN)-based ensemble. The comparison is performed in terms of eleven evaluation criteria. The evaluation results confirmed the superiority of the proposed model when compared with the basic models and the other ensemble models. |
| Author | Alshetewi, Sameer Ibrahim, Abdelhameed Sami Khafaga, Doaa M. El-kenawy, El-Sayed Khalid Karim, Faten A. Abdelhamid, Abdelaziz |
| Author_xml | – sequence: 1 givenname: Doaa surname: Sami Khafaga fullname: Sami Khafaga, Doaa – sequence: 2 givenname: El-Sayed surname: M. El-kenawy fullname: M. El-kenawy, El-Sayed – sequence: 3 givenname: Faten surname: Khalid Karim fullname: Khalid Karim, Faten – sequence: 4 givenname: Sameer surname: Alshetewi fullname: Alshetewi, Sameer – sequence: 5 givenname: Abdelhameed surname: Ibrahim fullname: Ibrahim, Abdelhameed – sequence: 6 givenname: Abdelaziz surname: A. Abdelhamid fullname: A. Abdelhamid, Abdelaziz |
| BookMark | eNp1kLtPwzAQxi1UJNrCzmiJOcWPxMZjVcpDKurSitE4jtO6SpxguwP89biPASGhG-6T7vvudL8RGLjOGQBuMZpQwlB-r1s9IYiQCaKEEHEBhrjIWZY0G_zSV2AUwg4hyqhAQ_Cx7KNt7bep4Luxm21MYu6CacvGwHWwbgMfbd8bD1db36nD-JxQ0XYOTptN523cttA6-GaiapPHW9XAqYvGOXUNLmvVBHNz7mOwfpqvZi_ZYvn8OpsuMk0xjVmJK1RySrDQjPIixwTniitUV7QWuuQ1FrWmDKEHhKuyopxXilPNiRBFjUhJx-DutLf33efehCh33d67dFISJlIVLM-Ti51c2ncheFNLbePxk-iVbSRG8khTJpryQFOeaKYg-hPsvW2V__o_8gMgy3nq |
| CitedBy_id | crossref_primary_10_3389_fenrg_2024_1391085 crossref_primary_10_1063_5_0208862 crossref_primary_10_1007_s41060_024_00640_8 crossref_primary_10_3389_fenrg_2023_1172176 crossref_primary_10_1038_s41598_025_92187_2 crossref_primary_10_1016_j_eswa_2024_123362 crossref_primary_10_1007_s00521_024_09608_y |
| Cites_doi | 10.1109/ACCESS.2022.3172954 10.1109/ACCESS.2022.3166901 10.1109/ACCESS.2021.3083593 10.1109/ACCESS.2020.2990828 10.1109/ACCESS.2020.3028012 10.1088/1757-899X/1070/1/012086 10.32604/cmc.2021.015843 10.1109/ACCESS.2020.3007336 10.1007/s11277-020-07324-z 10.1109/ACCESS.2021.3106233 10.32604/cmc.2021.019114 10.32604/cmc.2022.027653 10.3390/e21050471 10.1109/ACCESS.2021.3111408 10.32604/cmc.2022.025739 10.32604/cmc.2021.018179 10.1007/s11760-017-1212-6 10.1109/ACCESS.2021.3061058 10.1109/ACCESS.2020.3001151 10.32604/cmc.2022.026026 10.1109/ACCESS.2020.3015892 10.1109/ACCESS.2020.3013698 |
| ContentType | Journal Article |
| Copyright | 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7SR 8BQ 8FD ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO JG9 JQ2 L7M L~C L~D PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
| DOI | 10.32604/cmc.2022.032229 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Computer Science Collection Computer and Information Systems Abstracts Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China METADEX Computer and Information Systems Abstracts Professional ProQuest Central Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1546-2226 |
| EndPage | 5788 |
| ExternalDocumentID | 10_32604_cmc_2022_032229 |
| GroupedDBID | AAFWJ AAYXX ACIWK ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR CCPQU CITATION EBS EJD J9A OK1 P2P PHGZM PHGZT PIMPY RTS TUS 7SC 7SR 8BQ 8FD ABUWG AZQEC COVID DWQXO JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c313t-b1d0b73219c637541214a7a0fd3f9cb7f19fc3600801dbd377da73c72995f02b3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000864725100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1546-2226 1546-2218 |
| IngestDate | Sun Nov 30 04:19:58 EST 2025 Sat Nov 29 03:13:25 EST 2025 Tue Nov 18 21:24:25 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c313t-b1d0b73219c637541214a7a0fd3f9cb7f19fc3600801dbd377da73c72995f02b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2696965644?pq-origsite=%requestingapplication% |
| PQID | 2696965644 |
| PQPubID | 2048737 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_2696965644 crossref_citationtrail_10_32604_cmc_2022_032229 crossref_primary_10_32604_cmc_2022_032229 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-00-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 2022-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Henderson |
| PublicationPlace_xml | – name: Henderson |
| PublicationTitle | Computers, materials & continua |
| PublicationYear | 2022 |
| Publisher | Tech Science Press |
| Publisher_xml | – name: Tech Science Press |
| References | Eid (ref16) 2021 Ghoneim (ref24) 2021; 9 El-kenawy (ref9) 2021; 69 El-Kenawy (ref17) 2021; 9 Naktong (ref8) 2021; 68 Ibrahim (ref22) 2021; 9 Abdelhamid (ref6) 2022; 10 Salamai (ref25) 2021; 69 Ibrahim (ref13) 2020; 8 El-Kenawy (ref12) 2020; 8 Ibrahim (ref26) 2018; 12 Fouad (ref10) 2020; 8 Kurniawati (ref20) 2020 Abdelhamid (ref18) 2022; 72 Suganthi (ref1) 2021; 1070 El-Kenawy (ref23) 2022; 10 El-Kenawy (ref11) 2020; 8 El-Kenawy (ref21) 2021; 9 ref28 Gaber (ref27) 2015 Misilmani (ref3) 2019 Lin (ref19) 2019; 21 Abdelhamid (ref5) 2022; 73 Geetharamani (ref7) 2020; 113 Ibrahim (ref15) 2020 Sun (ref4) 2018; 6 Ibrahim (ref14) 2020; 8 Alibakhshikenari (ref2) 2020; 8 Takieldeen (ref29) 2022; 72 |
| References_xml | – volume: 10 start-page: 49265 year: 2022 ident: ref6 article-title: Robust speech emotion recognition using CNN+LSTM based on stochastic fractal search optimization algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3172954 – volume: 10 start-page: 40536 year: 2022 ident: ref23 article-title: Novel meta-heuristic algorithm for feature selection, unconstrained functions and engineering problems publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3166901 – start-page: 1 year: 2021 ident: ref16 article-title: A binary sine cosine-modified whale optimization algorithm for feature selection – start-page: 174 year: 2020 ident: ref20 article-title: Random forest regression for predicting metamaterial antenna parameters – volume: 9 start-page: 78324 year: 2021 ident: ref24 article-title: Adaptive dynamic meta-heuristics for feature selection and classification in diagnostic accuracy of transformer faults publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3083593 – volume: 8 start-page: 81747 year: 2020 ident: ref14 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2990828 – start-page: 600 year: 2019 ident: ref3 article-title: Machine learning in antenna design: An overview on machine learning concept and algorithms – volume: 8 start-page: 179317 year: 2020 ident: ref11 article-title: Novel feature selection and voting classifier algorithms for COVID-19 classification in CT images publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3028012 – volume: 1070 start-page: 12086 year: 2021 ident: ref1 article-title: Survey on metamaterial antennas publication-title: IOP Conference Series: Materials Science and Engineering doi: 10.1088/1757-899X/1070/1/012086 – volume: 68 start-page: 1731 year: 2021 ident: ref8 article-title: Resonator rectenna design based on metamaterials for low-RF energy harvesting publication-title: Computers, Materials & Continua doi: 10.32604/cmc.2021.015843 – volume: 8 start-page: 122121 year: 2020 ident: ref13 article-title: Breast cancer segmentation from thermal images based on chaotic salp swarm algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3007336 – start-page: 153 year: 2020 ident: ref15 article-title: Chaotic harris hawks optimization for unconstrained function optimization – volume: 113 start-page: 2289 year: 2020 ident: ref7 article-title: Design of metamaterial antenna for 2.4 GHz WiFi applications publication-title: Wireless Personal Communications doi: 10.1007/s11277-020-07324-z – start-page: 91 year: 2015 ident: ref27 article-title: Human thermal face recognition based on random linear oracle (RLO) ensembles – volume: 9 start-page: 115750 year: 2021 ident: ref21 article-title: Advanced ensemble model for solar radiation forecasting using sine cosine algorithm and Newton’s laws publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3106233 – volume: 69 start-page: 2983 year: 2021 ident: ref9 article-title: Advance artificial intelligence technique for designing double T-shaped monopole antenna publication-title: Computers, Materials & Continua doi: 10.32604/cmc.2021.019114 – volume: 73 start-page: 917 year: 2022 ident: ref5 article-title: Optimized two-level ensemble model for predicting the parameters of metamaterial antenna publication-title: Computers, Materials & Continua doi: 10.32604/cmc.2022.027653 – volume: 21 start-page: 471 year: 2019 ident: ref19 article-title: Support vector machine-based transmit antenna allocation for multiuser communication systems publication-title: Entropy doi: 10.3390/e21050471 – volume: 9 start-page: 1 year: 2021 ident: ref22 article-title: Wind speed ensemble forecasting based on deep learning using adaptive dynamic optimization algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3111408 – volume: 72 start-page: 2305 year: 2022 ident: ref18 article-title: Robust prediction of the bandwidth of metamaterial antenna using deep learning publication-title: Computers, Materials & Continua doi: 10.32604/cmc.2022.025739 – volume: 69 start-page: 3749 year: 2021 ident: ref25 article-title: Dynamic voting classifier for risk identification in supply chain 4. 0 publication-title: Computers, Materials & Continua doi: 10.32604/cmc.2021.018179 – volume: 12 start-page: 711 year: 2018 ident: ref26 article-title: Optimized superpixel and AdaBoost classifier for human thermal face recognition publication-title: Signal Image and Video Processing doi: 10.1007/s11760-017-1212-6 – ident: ref28 – volume: 9 start-page: 36019 year: 2021 ident: ref17 article-title: Advanced meta-heuristics, convolutional neural networks, and feature selectors for efficient COVID-19 X-ray chest image classification publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3061058 – volume: 8 start-page: 107635 year: 2020 ident: ref12 article-title: Mbgwo-SFS: Modified binary grey wolf optimizer based on stochastic fractal search for feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3001151 – volume: 72 start-page: 1465 year: 2022 ident: ref29 article-title: Dipper throated optimization algorithm for unconstrained function and feature selection publication-title: Computers, Materials & Continua doi: 10.32604/cmc.2022.026026 – volume: 8 start-page: 148378 year: 2020 ident: ref10 article-title: Dynamic group-based cooperative optimization algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3015892 – volume: 6 start-page: 2925 year: 2018 ident: ref4 article-title: An overview of metamaterials and their achievements in wireless power transfer publication-title: Journal of Materials Chemistry – volume: 8 start-page: 144778 year: 2020 ident: ref2 article-title: A comprehensive survey of metamaterial transmission-line based antennas: Design, challenges, and applications publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3013698 |
| SSID | ssj0036390 |
| Score | 2.3483727 |
| Snippet | Metamaterial Antennas are a type of antenna that uses metamaterial to enhance performance. The bandwidth restriction associated with small antennas can be... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 5771 |
| SubjectTerms | Algorithms Antennas Bandwidths Decision trees Machine learning Metamaterials Multilayer perceptrons Multilayers Optimization Support vector machines |
| Title | Optimized Weighted Ensemble Using Dipper Throated Optimization Algorithm in Metamaterial Antenna |
| URI | https://www.proquest.com/docview/2696965644 |
| Volume | 73 |
| WOSCitedRecordID | wos000864725100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central (New) customDbUrl: eissn: 1546-2226 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036390 issn: 1546-2226 databaseCode: BENPR dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1546-2226 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036390 issn: 1546-2226 databaseCode: PIMPY dateStart: 20040101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZ4DSy8EeUlDywMpomdxM2EChSBBKVCPMoUYsehkdq0NIGBX8_ZcUBdWJgSKXYS5Tt_dz479yF0xBUFZANFpKKMeDBhJkK0QhKkThoyKWLf1Cl4uuHdbqvfD3s24VbYbZU1JxqiTsZS58ibNNB1XHxw36eTd6JVo_TqqpXQmEeLulIZ2PniWafbu6-5mIH_Nb9E-l5AKHizaqESQhbHa8qRLmFI6YmjVxvCWcc0y8vG2Vyu_vc119CKDTNxu7KLdTSn8g20Wks4YDuiN9HrHVDGKPtSCX42SVI46eSFGomhwmY7Ab7IJhPo8jCYjmN92fYwiOL28A2eXg5GOMvxrSpjCICNTeO23hufx1vo8bLzcH5FrOgCkcxlJRFu4gjOgMhkoOVxXep6MY-dNGFpKAVP3TCVLNCRppuIhHGexJxJiNFDP3WoYNtoIR_nagdhP_Y85StgU60eDi0kVQ7zWj5PIK4RrIGa9RePpK1IroUxhhHMTAxGEWAUaYyiCqMGOv7pMamqcfzRdr9GKLLjsoh-4dn9-_IeWtb3qpIt-2ihnH6oA7QkP8usmB5aM4Nj7_q29_IN3vTbnw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7RgFQuBdoiaHnsoT1wWGLv2t74gFDEQ0QkaQ6h0JPxrtcQKXFC4oLgR_EbmV3bIC7cOHCztA9pPd_ON_uaD-CX0AwtG2iqNOPUwwUzlbIR0iB10pArGfs2T8Hftuh2GxcXYW8OHqu3MOZaZeUTraNOxsrskddZYPK4-Ejf-5MbalSjzOlqJaFRwOJU39_hkm221zpE-_5m7Piof3BCS1UBqrjLcyrdxJGC40xVgdF_dZnrxSJ20oSnoZIidcNU8cCEUm4iEy5EEguuMAgN_dRhkmO_n2DeM2CvwXyv1en9q3w_R763TzB9L6AM2bM4GMUQyfHqamRSJjK265jTjfA1Eb7mAUtux0sf7bcsw5cyjCbNAvcrMKezr7BUSVSQ0mN9g8s_6BJHgwedkHO7CYwfR9lMj-RQE3tdghwOJhNs0r-ejmNTXLawiCXN4RWONr8ekUFGOjqPMcC3c5Y0zd3_LP4OZ-8yzlWoZeNMrwHxY8_Tvka2MOroWEMx7XCv4YsE4zbJ16FeWThSZcZ1I_wxjHDlZTERISYig4mowMQ67Dy3mBTZRt6ou1EhIir9zix6gcOPt4u34fNJv9OO2q3u6U9YNP0WG0sbUMun__UmLKjbfDCbbpUQJ3D53vB5AjjJNW8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+Weighted+Ensemble+Using+Dipper+Throated+Optimization+Algorithm+in+Metamaterial+Antenna&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Sami+Khafaga%2C+Doaa&rft.au=M.+El-kenawy%2C+El-Sayed&rft.au=Khalid+Karim%2C+Faten&rft.au=Alshetewi%2C+Sameer&rft.date=2022&rft.issn=1546-2226&rft.volume=73&rft.issue=3&rft.spage=5771&rft.epage=5788&rft_id=info:doi/10.32604%2Fcmc.2022.032229&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2022_032229 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon |