Application of Metaheuristic Algorithms for Optimizing Longitudinal Square Porous Fins

The objectives of this study involve the optimization of longitudinal porous fins of square cross-section using metaheuristic algorithms. A generalized nonlinear ordinary differential equation is derived using Darcy and Fourier’s laws in the energy balance around a control volume and is solved numer...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers, materials & continua Ročník 67; číslo 1; s. 73 - 87
Hlavní autoři: Atawneh, Samer H, Khan, Waqar A, Hamadneh, Nawaf N, Alhomoud, Adeeb M
Médium: Journal Article
Jazyk:angličtina
Vydáno: Henderson Tech Science Press 2021
Témata:
ISSN:1546-2226, 1546-2218, 1546-2226
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The objectives of this study involve the optimization of longitudinal porous fins of square cross-section using metaheuristic algorithms. A generalized nonlinear ordinary differential equation is derived using Darcy and Fourier’s laws in the energy balance around a control volume and is solved numerically using RFK 45 method. The temperature of the base surface is higher than the fin surface, and the fin tip is kept adiabatic or cooled by convection heat transfer. The other pertinent parameters include Rayleigh number (100 ≤ Ra ≤ 104), Darcy number, (10−4 ≤ Da ≤ 10−2), relative thermal conductivity ratio of solid phase to fluid (1000 ≤ kr ≤ 8000), Nusselt number (10 ≤ Nu ≤ 100), porosity (0.1 ≤ φ ≤ 0.9). The impacts of these parameters on the entropy generation rate are investigated and optimized using metaheuristic algorithms. In computer science, metaheuristic algorithms are one of the most widely used techniques for optimization problems. In this research, three metaheuristic algorithms, including the firefly algorithm (FFA), particle swarm algorithm (PSO), and hybrid algorithm (FFA-PSO) are employed to examine the performance of square fins. It is demonstrated that FFA-PSO takes fewer iterations and less computational time to converge compared to other algorithms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1546-2226
1546-2218
1546-2226
DOI:10.32604/cmc.2021.012351