SPARSE-OTFS-Net: A Sparse Robust OTFS Signal Detection Algorithm for 6G Ubiquitous Coverage
With the evolution of 6G technology toward global coverage and multidimensional integration, OTFS modulation has become a research focus due to its advantages in high-mobility scenarios. However, existing OTFS signal detection algorithms face challenges such as pilot contamination, Doppler spread de...
Uloženo v:
| Vydáno v: | Electronics (Basel) Ročník 14; číslo 17; s. 3532 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
04.09.2025
|
| Témata: | |
| ISSN: | 2079-9292, 2079-9292 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | With the evolution of 6G technology toward global coverage and multidimensional integration, OTFS modulation has become a research focus due to its advantages in high-mobility scenarios. However, existing OTFS signal detection algorithms face challenges such as pilot contamination, Doppler spread degradation, and diverse interference in complex environments. This paper proposes the SPARSE-OTFS-Net algorithm, which establishes a comprehensive signal detection solution by innovatively integrating sparse random pilot design, compressive sensing-based frequency offset estimation with closed-loop cancellation, and joint denoising techniques combining an autoencoder, residual learning, and multi-scale feature fusion. The algorithm employs deep learning to dynamically generate non-uniform pilot distributions, reducing pilot contamination by 60%. Through orthogonal matching pursuit algorithms, it achieves super-resolution frequency offset estimation with tracking errors controlled within 20 Hz, effectively addressing Doppler spread degradation. The multi-stage denoising mechanism of deep neural networks suppresses various interferences while preserving time-frequency domain signal sparsity. Simulation results demonstrate: Under large frequency offset, multipath, and low SNR conditions, multi-kernel convolution technology achieves significant computational complexity reduction while exhibiting outstanding performance in tracking error and weak multipath detection. In 1000 km/h high-speed mobility scenarios, Doppler error estimation accuracy reaches ±25 Hz (approaching the Cramér-Rao bound), with BER performance of 5.0 × 10−6 (7× improvement over single-Gaussian CNN’s 3.5 × 10−5). In 1024-user interference scenarios with BER = 10−5 requirements, SNR demand decreases from 11.4 dB to 9.2 dB (2.2 dB reduction), while maintaining EVM at 6.5% under 1024-user concurrency (compared to 16.5% for conventional MMSE), effectively increasing concurrent user capacity in 6G ultra-massive connectivity scenarios. These results validate the superior performance of SPARSE-OTFS-Net in 6G ultra-massive connectivity applications and provide critical technical support for realizing integrated space–air–ground networks. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2079-9292 2079-9292 |
| DOI: | 10.3390/electronics14173532 |