The discrete Fourier transform algorithm for determining decay constants—Implementation using a field programmable gate array

Cavity ringdown spectroscopy (CRDS) uses the exponential decay constant of light exiting a high-finesse resonance cavity to determine analyte concentration, typically via absorption. We present a high-throughput data acquisition system that determines the decay constant in near real time using the d...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Review of scientific instruments Ročník 86; číslo 4; s. 043106
Hlavní autori: Bostrom, G, Atkinson, D, Rice, A
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.04.2015
ISSN:1089-7623, 1089-7623
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Cavity ringdown spectroscopy (CRDS) uses the exponential decay constant of light exiting a high-finesse resonance cavity to determine analyte concentration, typically via absorption. We present a high-throughput data acquisition system that determines the decay constant in near real time using the discrete Fourier transform algorithm on a field programmable gate array (FPGA). A commercially available, high-speed, high-resolution, analog-to-digital converter evaluation board system is used as the platform for the system, after minor hardware and software modifications. The system outputs decay constants at maximum rate of 4.4 kHz using an 8192-point fast Fourier transform by processing the intensity decay signal between ringdown events. We present the details of the system, including the modifications required to adapt the evaluation board to accurately process the exponential waveform. We also demonstrate the performance of the system, both stand-alone and incorporated into our existing CRDS system. Details of FPGA, microcontroller, and circuitry modifications are provided in the Appendix and computer code is available upon request from the authors.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1089-7623
1089-7623
DOI:10.1063/1.4916709