Graphical multispectral radiation temperature inversion algorithm based on deep learning

Neural networks are the most promising tool to solve the problem that an assumed emissivity model is needed in the field of multispectral radiometric temperature measurement. Existing neural network multispectral radiometric temperature measurement algorithms have been investigating the problems of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters Jg. 48; H. 8; S. 2166
Hauptverfasser: Xing, Jian, Guo, Jiabo, Cui, Shuanglong, Li, Wenchao, Chang, Xinfang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 15.04.2023
ISSN:1539-4794, 1539-4794
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neural networks are the most promising tool to solve the problem that an assumed emissivity model is needed in the field of multispectral radiometric temperature measurement. Existing neural network multispectral radiometric temperature measurement algorithms have been investigating the problems of network selection, network porting, and parameter optimization. The inversion accuracy and adaptability of the algorithms have been unsatisfactory. In view of the great success of deep learning in the field of image processing, this Letter proposes the idea of converting one-dimensional multispectral radiometric temperature data into two-dimensional image data for data processing to improve the accuracy and adaptability of multispectral radiometric temperature measurement by deep learning algorithms. Simulation and experimental validation are carried out. In the simulation, the error is less than 0.71% without noise and 1.80% with 5% random noise, which improves the accuracy by more than 1.55% and 2.66% compared with the classical BP (backpropagation) algorithm, and 0.94% and 0.96% compared with the GIM-LSTM (generalized inverse matrix-long short-term memory) algorithm. In the experiment, the error is less than 0.83%. This indicates that the method has high research value and is expected to lead multispectral radiometric temperature measurement technology to a new level.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1539-4794
1539-4794
DOI:10.1364/OL.487425