A Secure Intrusion Detection System in Cyberphysical Systems Using a Parameter-Tuned Deep-Stacked Autoencoder

Cyber physical systems (CPSs) are a networked system of cyber (computation, communication) and physical (sensors, actuators) elements that interact in a feedback loop with the assistance of human interference. Generally, CPSs authorize critical infrastructures and are considered to be important in t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers, materials & continua Ročník 68; číslo 3; s. 3915 - 3929
Hlavní autor: Aljehane, Nojood O
Médium: Journal Article
Jazyk:angličtina
Vydáno: Henderson Tech Science Press 2021
Témata:
ISSN:1546-2226, 1546-2218, 1546-2226
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Cyber physical systems (CPSs) are a networked system of cyber (computation, communication) and physical (sensors, actuators) elements that interact in a feedback loop with the assistance of human interference. Generally, CPSs authorize critical infrastructures and are considered to be important in the daily lives of humans because they form the basis of future smart devices. Increased utilization of CPSs, however, poses many threats, which may be of major significance for users. Such security issues in CPSs represent a global issue; therefore, developing a robust, secure, and effective CPS is currently a hot research topic. To resolve this issue, an intrusion detection system (IDS) can be designed to protect CPSs. When the IDS detects an anomaly, it instantly takes the necessary actions to avoid harming the system. In this study, we introduce a new parameter-tuned deep-stacked autoencoder based on deep learning (DL), called PT-DSAE, for the IDS in CPSs. The proposed model involves preprocessing, feature extraction, parameter tuning, and classification. First, data preprocessing takes place to eliminate the noise present in the data. Next, a DL-based DSAE model is applied to detect anomalies in the CPS. In addition, hyperparameter tuning of the DSAE takes place using a search-and-rescue optimization algorithm to tune the parameters of the DSAE, such as the number of hidden layers, batch size, epoch count, and learning rate. To assess the experimental outcomes of the PT-DSAE model, a series of experiments were performed using data from a sensor-based CPS. Moreover, a detailed comparative analysis was performed to ensure the effective detection outcome of the PT-DSAE technique. The experimental results obtained verified the superior performance on the applied data over the compared methods.
AbstractList Cyber physical systems (CPSs) are a networked system of cyber (computation, communication) and physical (sensors, actuators) elements that interact in a feedback loop with the assistance of human interference. Generally, CPSs authorize critical infrastructures and are considered to be important in the daily lives of humans because they form the basis of future smart devices. Increased utilization of CPSs, however, poses many threats, which may be of major significance for users. Such security issues in CPSs represent a global issue; therefore, developing a robust, secure, and effective CPS is currently a hot research topic. To resolve this issue, an intrusion detection system (IDS) can be designed to protect CPSs. When the IDS detects an anomaly, it instantly takes the necessary actions to avoid harming the system. In this study, we introduce a new parameter-tuned deep-stacked autoencoder based on deep learning (DL), called PT-DSAE, for the IDS in CPSs. The proposed model involves preprocessing, feature extraction, parameter tuning, and classification. First, data preprocessing takes place to eliminate the noise present in the data. Next, a DL-based DSAE model is applied to detect anomalies in the CPS. In addition, hyperparameter tuning of the DSAE takes place using a search-and-rescue optimization algorithm to tune the parameters of the DSAE, such as the number of hidden layers, batch size, epoch count, and learning rate. To assess the experimental outcomes of the PT-DSAE model, a series of experiments were performed using data from a sensor-based CPS. Moreover, a detailed comparative analysis was performed to ensure the effective detection outcome of the PT-DSAE technique. The experimental results obtained verified the superior performance on the applied data over the compared methods.
Author O. Aljehane, Nojood
Author_xml – sequence: 1
  givenname: Nojood
  surname: Aljehane
  middlename: O
  fullname: Aljehane, Nojood O
BookMark eNp1kM1rwkAQxZdioWp77zHQc-x-ZNfsUeyXILSgnpfNZGxjzcbubg757xurh1Load4M772B34gMXOOQkFtGJ4Irmt1DDRNOOZtQNtVUXpAhk5lKOedq8EtfkVEIO0qFEpoOST1LVgitx2Thom9D1bjkASNCPKpVFyLWSeWSeVegP3x0oQK7P99DsgmVe09s8ma9rfuUT9etw7JvwEO6ihY--2XWxgYdNCX6a3K5tfuAN-c5Jpunx_X8JV2-Pi_ms2UKgomYSswsVZkoFGbAmdWlzHUx1QXm2iIALXMtJC3BcqEht1ZOtxmzktOiUKBBjMndqffgm68WQzS7pvWuf2m4FFJxmuWsd9GTC3wTgsetOfiqtr4zjJofqKaHao5QzQlqH1F_IlBFe2QVva32_we_AWAdfyQ
CitedBy_id crossref_primary_10_32604_cmc_2022_026187
crossref_primary_10_1016_j_measurement_2021_110145
crossref_primary_10_1002_adc2_208
crossref_primary_10_32604_cmc_2022_023571
crossref_primary_10_32604_cmc_2022_026556
Cites_doi 10.1080/01431161.2016.1246775
10.1016/j.future.2017.08.043
10.1016/j.automatica.2018.03.024
10.1145/974043.974078
10.1145/3011018
10.1155/2019/2482543
10.1109/JIOT.2018.2883344
10.1007/s11045-018-0575-3
10.1109/ACCESS.2019.2891933
ContentType Journal Article
Copyright 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
8BQ
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
JG9
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.32604/cmc.2021.017905
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1546-2226
EndPage 3929
ExternalDocumentID 10_32604_cmc_2021_017905
GroupedDBID AAFWJ
AAYXX
ACIWK
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
J9A
OK1
P2P
PHGZM
PHGZT
PIMPY
RTS
TUS
7SC
7SR
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c313t-5e4a0643b6e4c21a9d589b79be89aecc0d89350dca239c8aa57f41a520bb6c9c3
IEDL.DBID BENPR
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000648908000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1546-2226
1546-2218
IngestDate Sun Nov 09 08:19:05 EST 2025
Sat Nov 29 03:13:17 EST 2025
Tue Nov 18 22:33:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-5e4a0643b6e4c21a9d589b79be89aecc0d89350dca239c8aa57f41a520bb6c9c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2535620481?pq-origsite=%requestingapplication%
PQID 2535620481
PQPubID 2048737
PageCount 15
ParticipantIDs proquest_journals_2535620481
crossref_primary_10_32604_cmc_2021_017905
crossref_citationtrail_10_32604_cmc_2021_017905
PublicationCentury 2000
PublicationDate 2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computers, materials & continua
PublicationYear 2021
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Abbes (ref1) 2004; 1
Yang (ref19) 2019; 9
ref14
Shabani (ref16) 2019; 2019
Li (ref15) 2016; 37
Kosek (ref5) 2016
Diro (ref18) 2018; 82
Krishnamurthy (ref6) 2014
Urbina (ref10) 2016
Djenouri (ref20) 2019; 7
Antonatos (ref2) 2004; 29
Li (ref17) 2018; 6
Goh (ref4) 2017
Kong (ref8) 2017; 62
Kshirsagar (ref3) 2012; 2231
Jones (ref7) 2014
Chibani (ref9) 2018; 93
Lu (ref12) 2008
Mansour (ref21) 2019; 30
Kleinmann (ref11) 2017; 8
Zygouras (ref13) 2015
References_xml – volume: 37
  start-page: 5632
  year: 2016
  ident: ref15
  article-title: Stacked autoencoder-based deep learning for remote-sensing image classification: A case study of African land-cover mapping
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431161.2016.1246775
– volume: 82
  start-page: 761
  year: 2018
  ident: ref18
  article-title: Distributed attack detection scheme using deep learning approach for internet of things
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2017.08.043
– volume: 9
  start-page: 23844
  year: 2019
  ident: ref19
  article-title: Building an effective intrusion detection system using the modified density peak clustering algorithm and deep belief networks
  publication-title: Appl. Sci.
– volume: 1
  start-page: 404
  year: 2004
  ident: ref1
  article-title: Protocol analysis in intrusion detection using decision tree
– volume: 93
  start-page: 42
  year: 2018
  ident: ref9
  article-title: Design of robust fuzzy fault detection filter for polynomial fuzzy systems with new finite frequency specifications
  publication-title: Automatica
  doi: 10.1016/j.automatica.2018.03.024
– start-page: 1092
  year: 2016
  ident: ref10
  article-title: Limiting the impact of stealthy attacks on industrial control systems
– start-page: 1
  year: 2016
  ident: ref5
  article-title: Contextual anomaly detection for cyber-physical security in smart grids based on an artificial neural network model
– start-page: 848
  year: 2014
  ident: ref7
  article-title: Anomaly detection in cyber-physical systems: A formal methods approach
– start-page: V002T26A006
  year: 2014
  ident: ref6
  article-title: Scalable anomaly detection and isolation in cyber-physical systems using bayesian networks
– volume: 29
  start-page: 207
  year: 2004
  ident: ref2
  publication-title: ACM SIGSOFT Software Engineering Notes
  doi: 10.1145/974043.974078
– volume: 8
  start-page: 1
  year: 2017
  ident: ref11
  article-title: Automatic construction of statechart-based anomaly detection models for multi-threaded industrial control systems
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/3011018
– volume: 2019
  start-page: 1
  year: 2019
  ident: ref16
  article-title: A new optimization algorithm based on search and rescue operations
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2019/2482543
– volume: 6
  start-page: 2093
  year: 2018
  ident: ref17
  article-title: AI-based two-stage intrusion detection for software defined IoT networks
  publication-title: IEEE Internet of Things Journal
  doi: 10.1109/JIOT.2018.2883344
– start-page: 140
  year: 2017
  ident: ref4
  article-title: Anomaly detection in cyber physical systems using recurrent neural networks
– volume: 30
  start-page: 791
  year: 2019
  ident: ref21
  article-title: An evolutionary computing enriched RS attack resilient medical image steganography model for telemedicine applications
  publication-title: Multidim. Syst. Sign Process
  doi: 10.1007/s11045-018-0575-3
– start-page: 16
  year: 2008
  ident: ref12
  article-title: Faulty loop data analysis/correction and loop fault detection
– start-page: 53
  year: 2015
  ident: ref13
  article-title: Towards detection of faulty traffic sensors in real-time
– volume: 62
  start-page: 1210
  year: 2017
  ident: ref8
  article-title: Temporal logics for learning and detection of anomalous behavior
  publication-title: IEEE Trans
– volume: 7
  start-page: 10015
  year: 2019
  ident: ref20
  article-title: Adapted k-nearest neighbors for detecting anomalies on spatio-temporal traffic flow
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2891933
– volume: 2231
  start-page: 5292
  year: 2012
  ident: ref3
  article-title: Intrusion detection system using genetic algorithm and data mining: An overview
  publication-title: International Journal of Computer Science and Informatics ISSN (PRINT)
– ident: ref14
SSID ssj0036390
Score 2.2554626
Snippet Cyber physical systems (CPSs) are a networked system of cyber (computation, communication) and physical (sensors, actuators) elements that interact in a...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 3915
SubjectTerms Actuators
Algorithms
Anomalies
Communications systems
Cyber-physical systems
Electronic devices
Feature extraction
Feedback loops
Intrusion detection systems
Machine learning
Mathematical models
Optimization
Parameters
Preprocessing
Tuning
Title A Secure Intrusion Detection System in Cyberphysical Systems Using a Parameter-Tuned Deep-Stacked Autoencoder
URI https://www.proquest.com/docview/2535620481
Volume 68
WOSCitedRecordID wos000648908000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: BENPR
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: PIMPY
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6-Dl58i29y8OIhbtok2_Yk6wsFXYoo6KkkkywI2l13V8F_7yRNFS9ePBX6GEq-ycxkMvmGkEObK-gCcKZAWCYd91OKSwZgjePCn_MJPLM3Wb-fPz4WZUy4TWJZZWsTg6G2Q_A58k6qhPLc6XlyMnpjvmuU312NLTRmybxnKkM9nz-96Jd3rS0W6H_DkUgluyxFb9ZsVGLIwmUHXj2FYZoc88BS9dsx_bbLwdlcLv_3N1fIUgwzaa_Ri1Uy4-o1sty2cKBxRq-T1x4NGXdHr2t__AJRouduGuqzatrQmdPnmp59GjceRUzj_QkN9QZU01L7Ei8UzO7f0WyjBDdiGMaihbC09z4derZM68Yb5OHy4v7sisUODAxEIqZMOal9zGK6TkKa6MKqvDBZYVxeaASfWwx3FLegU1FArrXKBjLRKuXGdKEAsUnm6mHttggd4LolA2M4SpYy02YgclQHbfUAEsv1Num0w19BpCf3XTJeKlymBMAqBKzygFUNYNvk6PuLUUPN8ce7ey1cVZykk-oHq52_H--SRS-rybzskTnEw-2TBfiYPk_GB1Hn8Fpe35ZPX7Qa4sg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB7RUKlcSp-CFlof2kMPbrxrO7t7QCjiISJClEMq0dPWHjsSUtmEJFDxp_obO_buFnHhxoHrPkby-tv5bM_MNwBfXK6xhyi4Rum48iL8UkJxRGe9kKHOJ-rMDrPRKD8_L8Zr8LethQlpla1PjI7azTCckXdTLXXQTs-T_fkVD12jQnS1baFRw-LU3_6hLdtyb3BI8_s1TY-PJgcnvOkqwFEmcsW1VybwsO15hWliCqfzwmaF9XlhaEDCEYVr4dCkssDcGJ1NVWJ0KqztYYGS7D6DdRXA3oH18eBs_LP1_ZL4PpZgatXjKbFnHRilJZJQXbwMkolp8l1EVaz7RHifByK5HW8-tc_yCl42y2jWr3H_GtZ89QY22xYVrPFYb-Gyz2JEwbNBFcpLCIXs0K9i_lnFarl2dlGxg1vrF_MGs831JYv5FMywsQkpbGSYT66JlsiCn3NappMHdKx_vZoFNVDnF-_gx6MM-j10qlnlt4BNaV-WobWCLCuVGTuVOcHdODPFxAmzDd12ukts5NdDF5DfJW3DIkBKAkgZAFLWANmGb__fmNfSIw88u9PCo2yc0LK8w8aHh29_hhcnk7NhORyMTj_CRrBbnzLtQIfmxu_Cc7xZXSwXnxq8M_j12Fj6BzgmP5U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Secure+Intrusion+Detection+System+in+Cyberphysical+Systems+Using+a+Parameter-Tuned+Deep-Stacked+Autoencoder&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=O.+Aljehane%2C+Nojood&rft.date=2021&rft.issn=1546-2226&rft.volume=68&rft.issue=3&rft.spage=3915&rft.epage=3929&rft_id=info:doi/10.32604%2Fcmc.2021.017905&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2021_017905
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon