Integer Programming for Bayesian Network Structure Learning

Bayesian networks provide an attractive representation of structured probabilistic information. There is thus much interest in 'learning' BNs from data. In this paper the problem of learning a Bayesian network using integer programming is presented. The SCIP (Solving Constraint Integer Pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quality technology & quantitative management Jg. 11; H. 1; S. 99 - 110
1. Verfasser: Cussens, James
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Taylor & Francis 2014
Schlagworte:
ISSN:1684-3703, 1684-3703
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bayesian networks provide an attractive representation of structured probabilistic information. There is thus much interest in 'learning' BNs from data. In this paper the problem of learning a Bayesian network using integer programming is presented. The SCIP (Solving Constraint Integer Programming) framework is used to do this. Although cutting planes are a key ingredient in our approach, primal heuristics and efficient propagation are also important.
ISSN:1684-3703
1684-3703
DOI:10.1080/16843703.2014.11673328