Integer Programming for Bayesian Network Structure Learning
Bayesian networks provide an attractive representation of structured probabilistic information. There is thus much interest in 'learning' BNs from data. In this paper the problem of learning a Bayesian network using integer programming is presented. The SCIP (Solving Constraint Integer Pro...
Gespeichert in:
| Veröffentlicht in: | Quality technology & quantitative management Jg. 11; H. 1; S. 99 - 110 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Taylor & Francis
2014
|
| Schlagworte: | |
| ISSN: | 1684-3703, 1684-3703 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Bayesian networks provide an attractive representation of structured probabilistic information. There is thus much interest in 'learning' BNs from data. In this paper the problem of learning a Bayesian network using integer programming is presented. The SCIP (Solving Constraint Integer Programming) framework is used to do this. Although cutting planes are a key ingredient in our approach, primal heuristics and efficient propagation are also important. |
|---|---|
| ISSN: | 1684-3703 1684-3703 |
| DOI: | 10.1080/16843703.2014.11673328 |