Deep sequence to sequence semantic embedding with attention for entity linking in context of incomplete linked data

In contemporary times, Linked Data has emerged as a prominent approach for publishing data on the internet. This data is typically represented in the form of RDF (Resource Description Framework) triples, which are interconnected, thus enhancing the relevance of search results for users. Despite its...

Full description

Saved in:
Bibliographic Details
Published in:Engineering applications of artificial intelligence Vol. 134; p. 108689
Main Authors: Hamel, Oussama, Fareh, Messaouda
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.08.2024
Subjects:
ISSN:0952-1976, 1873-6769
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In contemporary times, Linked Data has emerged as a prominent approach for publishing data on the internet. This data is typically represented in the form of RDF (Resource Description Framework) triples, which are interconnected, thus enhancing the relevance of search results for users. Despite its advantages, Linked Data suffers from various limitations, such as erroneous data, imprecise information, and missing links between resources. Existing solutions to address the issue of missing links in RDF triples often overlook the semantic relationship between the subject and object. To address this gap, we present a novel approach called LinkED-S2S (Linking Entities deeply with Sequence To Sequence model), which employs an encoder–decoder model with an attention mechanism. Our proposed model incorporates an embedding layer to enhance data representation, along with GRU (Gated Recurrent Unit) cells to mitigate the vanishing gradient problem. This work demonstrates significant improvement in predicting missing links compared to baseline models. We evaluated our model’s performance using a comprehensive set of metrics on the widely-used DBpedia dataset and standard benchmark datasets. Our model achieved very good results on these metrics, highlighting its effectiveness in predicting missing links.
AbstractList In contemporary times, Linked Data has emerged as a prominent approach for publishing data on the internet. This data is typically represented in the form of RDF (Resource Description Framework) triples, which are interconnected, thus enhancing the relevance of search results for users. Despite its advantages, Linked Data suffers from various limitations, such as erroneous data, imprecise information, and missing links between resources. Existing solutions to address the issue of missing links in RDF triples often overlook the semantic relationship between the subject and object. To address this gap, we present a novel approach called LinkED-S2S (Linking Entities deeply with Sequence To Sequence model), which employs an encoder–decoder model with an attention mechanism. Our proposed model incorporates an embedding layer to enhance data representation, along with GRU (Gated Recurrent Unit) cells to mitigate the vanishing gradient problem. This work demonstrates significant improvement in predicting missing links compared to baseline models. We evaluated our model’s performance using a comprehensive set of metrics on the widely-used DBpedia dataset and standard benchmark datasets. Our model achieved very good results on these metrics, highlighting its effectiveness in predicting missing links.
ArticleNumber 108689
Author Hamel, Oussama
Fareh, Messaouda
Author_xml – sequence: 1
  givenname: Oussama
  orcidid: 0000-0002-3155-2380
  surname: Hamel
  fullname: Hamel, Oussama
  email: hamel.oussama@etu.univ-blida.dz
– sequence: 2
  givenname: Messaouda
  orcidid: 0000-0002-6930-1544
  surname: Fareh
  fullname: Fareh, Messaouda
  email: farehm@gmail.com
BookMark eNqFkMtOwzAQRS1UJNrCLyD_QIqdh5NILEDlKVViA2vLj3FxSewQm0f_noSCkNh0NXdGc69mzgxNnHeA0CklC0ooO9sswK1F1wm7SEmaD8OKVfUBmtKqzBJWsnqCpqQu0oTWJTtCsxA2hJCsytkUhSuADgd4fQOnAEf_pwO0wkWrMLQStLZujT9sfMYiRhjm3mHjezzKuMWNdS_jhnVYeRfhM2Jvhk75tmsgwvcCaKxFFMfo0IgmwMlPnaOnm-vH5V2yeri9X16uEpXRNCbGgICqVKoqJauLihVQgMhqLbXMNbDcUKG1AQZSMkJzmRUiBVqkkNe5zmQ2R-e7XNX7EHowXNkoxstjL2zDKeEjQL7hvwD5CJDvAA529s_e9bYV_Xa_8WJnhOG5dws9D8qOSLXtQUWuvd0X8QXD9ZVz
CitedBy_id crossref_primary_10_1177_14727978251322545
Cites_doi 10.1504/IJMSO.2020.107791
10.18653/v1/W15-4007
10.1016/j.cmpb.2018.05.024
10.1007/s11280-010-0107-z
10.4018/IJSWIS.295977
10.1016/j.aei.2023.102008
10.1609/aaai.v32i1.11573
10.1016/j.websem.2016.05.001
10.1177/1473871621991539
10.1145/3486622.3493956
10.1145/3196248
10.1016/j.aei.2021.101427
10.1007/s13218-021-00713-x
10.1145/2851613.2851839
10.1145/3360901.3364425
10.1007/s11280-020-00793-z
10.1007/s11280-019-00764-z
10.1016/j.websem.2018.12.003
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2024.108689
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2024_108689
S0952197624008479
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c312t-ffeae87cc87b695865e5ea39dbdb4de64f1addfe6ebb6014b35a2e152e494d3b3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001248564000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Sat Nov 29 03:41:18 EST 2025
Tue Nov 18 22:42:47 EST 2025
Tue Jun 18 08:50:47 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Links prediction
Attention mechanism
Linked data
Semantic links
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-ffeae87cc87b695865e5ea39dbdb4de64f1addfe6ebb6014b35a2e152e494d3b3
ORCID 0000-0002-6930-1544
0000-0002-3155-2380
ParticipantIDs crossref_citationtrail_10_1016_j_engappai_2024_108689
crossref_primary_10_1016_j_engappai_2024_108689
elsevier_sciencedirect_doi_10_1016_j_engappai_2024_108689
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Silva, Souza, Durão (b35) 2020; 14
Sun, Deng, Nie, Tang (b36) 2019
Biswas, Sofronova, Alam, Sack (b8) 2020
Darari, Nutt, Pirrò, Razniewski (b14) 2018; 12
Pan, He, Yu (b28) 2020; 23
Yue, Tian, Chen, Han, Yin (b41) 2020; 23
Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S., 2018. Convolutional 2d knowledge graph embeddings. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32, No. 1.
Mihindukulasooriya, Rico (b24) 2018
Nechaev, Corcoglioniti, Giuliano (b25) 2018
Prasojo, R.E., Darari, F., Razniewski, S., Nutt, W., 2016. Managing and Consuming Completeness Information for Wikidata Using COOL-WD. In: COLD@ ISWC. 1666.
Destandau, Fekete (b15) 2021; 20
Hamel, Fareh (b19) 2022
Umbrich, Hose, Karnstedt, Harth, Polleres (b38) 2011; 14
Biswas, Alam, Sack (b7) 2021
Paulheim, Bizer (b29) 2013
Piao, G., Breslin, J.G., 2016. Measuring semantic distance for linked open data-enabled recommender systems. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing. pp. 315–320.
d’Amato, C., Masella, P., Fanizzi, N., 2021. An Approach Based on Semantic Similarity to Explaining Link Predictions on Knowledge Graphs. In: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology. pp. 170–177.
Achichi, Bellahsene, Ellefi, Todorov (b1) 2019; 55
Ngonga Ngomo, Sherif, Georgala, Hassan, Dreßler, Lyko, Obraczka, Soru (b26) 2021; 35
Qin, Gao, Peng, Wu, Shen, Grudtsin (b32) 2018; 162
Zhang, Lin, Pi (b42) 2017
McCrae, Buitelaar (b23) 2018; 18
Bordes, Usunier, Garcia-Duran, Weston, Yakhnenko (b11) 2013; 26
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b39) 2017; 30
Hou, Luo, Qin, Shao, Chen (b20) 2023; 56
Reynolds (b34) 2014
Craswell (b12) 2009
Balažević, Allen, Hospedales (b4) 2019
Laskey, Laskey (b22) 2008; 8
Wisesa, A., Darari, F., Krisnadhi, A., Nutt, W., Razniewski, S., 2019. Wikidata completeness profiling using proWD. In: Proceedings of the 10th International Conference on Knowledge Capture. pp. 123–130.
Toutanova, K., Chen, D., 2015. Observed versus latent features for knowledge base and text inference. In: Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality. pp. 57–66.
Barbosa, Bittencourt, Siqueira, Dermeval, Cruz (b5) 2022; 18
Hamel, Fareh (b18) 2022
Goodfellow, Bengio, Courville (b17) 2016
Bahdanau, Cho, Bengio (b3) 2014
Berners-Lee (b6) 2006
Biswas, R., Türker, R., Moghaddam, F.B., Koutraki, M., Sack, H., 2018. Wikipedia Infobox Type Prediction Using Embeddings. In: DL4KGS@ ESWC. pp. 46–55.
Kliegr, Zamazal (b21) 2016; 39
Nguyen, Nguyen, Nguyen, Phung (b27) 2017
Qin, Qiu, Gao, Bai (b33) 2022; 51
Al-Bakri, Atencia, David, Lalande, Rousset (b2) 2016
Bizer, Heath, Berners-Lee (b10) 2011
Silva (10.1016/j.engappai.2024.108689_b35) 2020; 14
Balažević (10.1016/j.engappai.2024.108689_b4) 2019
Umbrich (10.1016/j.engappai.2024.108689_b38) 2011; 14
10.1016/j.engappai.2024.108689_b40
Goodfellow (10.1016/j.engappai.2024.108689_b17) 2016
Reynolds (10.1016/j.engappai.2024.108689_b34) 2014
Nguyen (10.1016/j.engappai.2024.108689_b27) 2017
Mihindukulasooriya (10.1016/j.engappai.2024.108689_b24) 2018
Destandau (10.1016/j.engappai.2024.108689_b15) 2021; 20
Pan (10.1016/j.engappai.2024.108689_b28) 2020; 23
Hamel (10.1016/j.engappai.2024.108689_b19) 2022
Nechaev (10.1016/j.engappai.2024.108689_b25) 2018
Berners-Lee (10.1016/j.engappai.2024.108689_b6) 2006
Paulheim (10.1016/j.engappai.2024.108689_b29) 2013
10.1016/j.engappai.2024.108689_b13
Al-Bakri (10.1016/j.engappai.2024.108689_b2) 2016
Barbosa (10.1016/j.engappai.2024.108689_b5) 2022; 18
Biswas (10.1016/j.engappai.2024.108689_b7) 2021
10.1016/j.engappai.2024.108689_b30
10.1016/j.engappai.2024.108689_b31
McCrae (10.1016/j.engappai.2024.108689_b23) 2018; 18
Laskey (10.1016/j.engappai.2024.108689_b22) 2008; 8
Bordes (10.1016/j.engappai.2024.108689_b11) 2013; 26
10.1016/j.engappai.2024.108689_b9
Hou (10.1016/j.engappai.2024.108689_b20) 2023; 56
Ngonga Ngomo (10.1016/j.engappai.2024.108689_b26) 2021; 35
Zhang (10.1016/j.engappai.2024.108689_b42) 2017
Kliegr (10.1016/j.engappai.2024.108689_b21) 2016; 39
Qin (10.1016/j.engappai.2024.108689_b32) 2018; 162
Sun (10.1016/j.engappai.2024.108689_b36) 2019
Achichi (10.1016/j.engappai.2024.108689_b1) 2019; 55
Bizer (10.1016/j.engappai.2024.108689_b10) 2011
Craswell (10.1016/j.engappai.2024.108689_b12) 2009
Vaswani (10.1016/j.engappai.2024.108689_b39) 2017; 30
Yue (10.1016/j.engappai.2024.108689_b41) 2020; 23
Bahdanau (10.1016/j.engappai.2024.108689_b3) 2014
Hamel (10.1016/j.engappai.2024.108689_b18) 2022
Biswas (10.1016/j.engappai.2024.108689_b8) 2020
Darari (10.1016/j.engappai.2024.108689_b14) 2018; 12
10.1016/j.engappai.2024.108689_b37
10.1016/j.engappai.2024.108689_b16
Qin (10.1016/j.engappai.2024.108689_b33) 2022; 51
References_xml – start-page: 510
  year: 2013
  end-page: 525
  ident: b29
  article-title: Type inference on noisy RDF data
  publication-title: International Semantic Web Conference
– reference: Prasojo, R.E., Darari, F., Razniewski, S., Nutt, W., 2016. Managing and Consuming Completeness Information for Wikidata Using COOL-WD. In: COLD@ ISWC. 1666.
– volume: 51
  year: 2022
  ident: b33
  article-title: 3D CAD model retrieval based on sketch and unsupervised variational autoencoder
  publication-title: Adv. Eng. Inform.
– volume: 56
  year: 2023
  ident: b20
  article-title: FuS-GCN: Efficient B-rep based graph convolutional networks for 3D-CAD model classification and retrieval
  publication-title: Adv. Eng. Inform.
– volume: 35
  start-page: 413
  year: 2021
  end-page: 423
  ident: b26
  article-title: LIMES: A framework for link discovery on the semantic web
  publication-title: KI-Künstliche Intell.
– start-page: 279
  year: 2018
  end-page: 287
  ident: b24
  article-title: Type prediction of rdf knowledge graphs using binary classifiers with structural data
  publication-title: International Conference on Web Engineering
– volume: 14
  start-page: 16
  year: 2020
  end-page: 25
  ident: b35
  article-title: HSLD: a hybrid similarity measure for linked data resources
  publication-title: Int. J. Metadata, Semant. Ontologies
– volume: 18
  start-page: 109
  year: 2018
  end-page: 123
  ident: b23
  article-title: Linking datasets using semantic textual similarity
  publication-title: Cybern. Inf. Technol.
– volume: 20
  start-page: 66
  year: 2021
  end-page: 82
  ident: b15
  article-title: The missing path: Analysing incompleteness in knowledge graphs
  publication-title: Inf. Vis.
– reference: Wisesa, A., Darari, F., Krisnadhi, A., Nutt, W., Razniewski, S., 2019. Wikidata completeness profiling using proWD. In: Proceedings of the 10th International Conference on Knowledge Capture. pp. 123–130.
– volume: 23
  start-page: 2715
  year: 2020
  end-page: 2737
  ident: b41
  article-title: Deep learning for heterogeneous medical data analysis
  publication-title: World Wide Web
– volume: 12
  start-page: 1
  year: 2018
  end-page: 53
  ident: b14
  article-title: Completeness management for RDF data sources
  publication-title: ACM Trans. Web (TWEB)
– start-page: 553
  year: 2019
  end-page: 565
  ident: b4
  article-title: Hypernetwork knowledge graph embeddings
  publication-title: International Conference on Artificial Neural Networks
– start-page: 1703
  year: 2009
  ident: b12
  article-title: Mean reciprocal rank
  publication-title: Encyclopedia of Database Systems
– volume: 39
  start-page: 47
  year: 2016
  end-page: 61
  ident: b21
  article-title: LHD 2.0: A text mining approach to typing entities in knowledge graphs
  publication-title: J. Web Semant.
– volume: 23
  start-page: 2259
  year: 2020
  end-page: 2279
  ident: b28
  article-title: Learning social representations with deep autoencoder for recommender system
  publication-title: World Wide Web
– year: 2016
  ident: b17
  article-title: Deep Learning
– start-page: 733
  year: 2022
  end-page: 739
  ident: b18
  article-title: Encoder-decoder neural network with attention mechanism for types detection in linked data
  publication-title: 2022 17th Conference on Computer Science and Intelligence Systems
– year: 2014
  ident: b34
  article-title: Position paper: Uncertainty reasoning for linked data
  publication-title: Workshop, Vol. 14
– year: 2006
  ident: b6
  article-title: Linked data - Design issues
– year: 2019
  ident: b36
  article-title: Rotate: Knowledge graph embedding by relational rotation in complex space
– reference: Toutanova, K., Chen, D., 2015. Observed versus latent features for knowledge base and text inference. In: Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality. pp. 57–66.
– start-page: 1033
  year: 2018
  end-page: 1042
  ident: b25
  article-title: Type prediction combining linked open data and social media
  publication-title: Proceedings of the 27th ACM International Conference on Information and Knowledge Management
– volume: 162
  start-page: 243
  year: 2018
  end-page: 252
  ident: b32
  article-title: Fine-grained leukocyte classification with deep residual learning for microscopic images
  publication-title: Comput. Methods Programs Biomed.
– volume: 14
  start-page: 495
  year: 2011
  end-page: 544
  ident: b38
  article-title: Comparing data summaries for processing live queries over linked data
  publication-title: World Wide Web
– reference: d’Amato, C., Masella, P., Fanizzi, N., 2021. An Approach Based on Semantic Similarity to Explaining Link Predictions on Knowledge Graphs. In: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology. pp. 170–177.
– year: 2020
  ident: b8
  article-title: Entity type prediction in knowledge graphs using embeddings
– volume: 55
  start-page: 108
  year: 2019
  end-page: 121
  ident: b1
  article-title: Linking and disambiguating entities across heterogeneous RDF graphs
  publication-title: J. Web Semant.
– volume: 18
  start-page: 1
  year: 2022
  end-page: 29
  ident: b5
  article-title: A context-independent ontological linked data alignment approach to instance matching
  publication-title: Int. J. Semant. Web Inf. Syst. (IJSWIS)
– reference: Piao, G., Breslin, J.G., 2016. Measuring semantic distance for linked open data-enabled recommender systems. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing. pp. 315–320.
– start-page: 391
  year: 2017
  end-page: 396
  ident: b42
  article-title: Predicting object types in linked data by text classification
  publication-title: 2017 Fifth International Conference on Advanced Cloud and Big Data
– reference: Biswas, R., Türker, R., Moghaddam, F.B., Koutraki, M., Sack, H., 2018. Wikipedia Infobox Type Prediction Using Embeddings. In: DL4KGS@ ESWC. pp. 46–55.
– volume: 30
  year: 2017
  ident: b39
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2014
  ident: b3
  article-title: Neural machine translation by jointly learning to align and translate
– reference: Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S., 2018. Convolutional 2d knowledge graph embeddings. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32, No. 1.
– volume: 26
  year: 2013
  ident: b11
  article-title: Translating embeddings for modeling multi-relational data
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 212
  year: 2022
  end-page: 231
  ident: b19
  article-title: Missing types prediction in linked data using deep neural network with attention mechanism: Case study on dbpedia and uniprot datasets
  publication-title: Special Sessions in the Advances in Information Systems and Technologies Track of the Conference on Computer Science and Intelligence Systems
– start-page: 698
  year: 2016
  end-page: 706
  ident: b2
  article-title: Uncertainty-sensitive reasoning for inferring sameas facts in linked data
  publication-title: 22nd European Conference on Artificial Intelligence
– year: 2021
  ident: b7
  article-title: MADLINK: Attentive multihop and entity descriptions for link prediction in knowledge graphs
– start-page: 205
  year: 2011
  end-page: 227
  ident: b10
  article-title: Linked data: The story so far
  publication-title: Semantic Services, Interoperability and Web Applications: Emerging Concepts
– volume: 8
  start-page: 108
  year: 2008
  end-page: 116
  ident: b22
  article-title: Uncertainty reasoning for the world wide web: Report on the URW3-XG incubator group
  publication-title: URSW
– year: 2017
  ident: b27
  article-title: A novel embedding model for knowledge base completion based on convolutional neural network
– start-page: 553
  year: 2019
  ident: 10.1016/j.engappai.2024.108689_b4
  article-title: Hypernetwork knowledge graph embeddings
– volume: 14
  start-page: 16
  issue: 1
  year: 2020
  ident: 10.1016/j.engappai.2024.108689_b35
  article-title: HSLD: a hybrid similarity measure for linked data resources
  publication-title: Int. J. Metadata, Semant. Ontologies
  doi: 10.1504/IJMSO.2020.107791
– ident: 10.1016/j.engappai.2024.108689_b37
  doi: 10.18653/v1/W15-4007
– volume: 8
  start-page: 108
  year: 2008
  ident: 10.1016/j.engappai.2024.108689_b22
  article-title: Uncertainty reasoning for the world wide web: Report on the URW3-XG incubator group
  publication-title: URSW
– volume: 162
  start-page: 243
  year: 2018
  ident: 10.1016/j.engappai.2024.108689_b32
  article-title: Fine-grained leukocyte classification with deep residual learning for microscopic images
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.05.024
– year: 2020
  ident: 10.1016/j.engappai.2024.108689_b8
– volume: 14
  start-page: 495
  issue: 5
  year: 2011
  ident: 10.1016/j.engappai.2024.108689_b38
  article-title: Comparing data summaries for processing live queries over linked data
  publication-title: World Wide Web
  doi: 10.1007/s11280-010-0107-z
– start-page: 1033
  year: 2018
  ident: 10.1016/j.engappai.2024.108689_b25
  article-title: Type prediction combining linked open data and social media
– volume: 30
  year: 2017
  ident: 10.1016/j.engappai.2024.108689_b39
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 18
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.engappai.2024.108689_b5
  article-title: A context-independent ontological linked data alignment approach to instance matching
  publication-title: Int. J. Semant. Web Inf. Syst. (IJSWIS)
  doi: 10.4018/IJSWIS.295977
– start-page: 205
  year: 2011
  ident: 10.1016/j.engappai.2024.108689_b10
  article-title: Linked data: The story so far
– ident: 10.1016/j.engappai.2024.108689_b31
– volume: 56
  year: 2023
  ident: 10.1016/j.engappai.2024.108689_b20
  article-title: FuS-GCN: Efficient B-rep based graph convolutional networks for 3D-CAD model classification and retrieval
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2023.102008
– year: 2014
  ident: 10.1016/j.engappai.2024.108689_b3
– ident: 10.1016/j.engappai.2024.108689_b16
  doi: 10.1609/aaai.v32i1.11573
– year: 2017
  ident: 10.1016/j.engappai.2024.108689_b27
– volume: 39
  start-page: 47
  year: 2016
  ident: 10.1016/j.engappai.2024.108689_b21
  article-title: LHD 2.0: A text mining approach to typing entities in knowledge graphs
  publication-title: J. Web Semant.
  doi: 10.1016/j.websem.2016.05.001
– ident: 10.1016/j.engappai.2024.108689_b9
– volume: 20
  start-page: 66
  issue: 1
  year: 2021
  ident: 10.1016/j.engappai.2024.108689_b15
  article-title: The missing path: Analysing incompleteness in knowledge graphs
  publication-title: Inf. Vis.
  doi: 10.1177/1473871621991539
– ident: 10.1016/j.engappai.2024.108689_b13
  doi: 10.1145/3486622.3493956
– start-page: 212
  year: 2022
  ident: 10.1016/j.engappai.2024.108689_b19
  article-title: Missing types prediction in linked data using deep neural network with attention mechanism: Case study on dbpedia and uniprot datasets
– start-page: 279
  year: 2018
  ident: 10.1016/j.engappai.2024.108689_b24
  article-title: Type prediction of rdf knowledge graphs using binary classifiers with structural data
– volume: 12
  start-page: 1
  issue: 3
  year: 2018
  ident: 10.1016/j.engappai.2024.108689_b14
  article-title: Completeness management for RDF data sources
  publication-title: ACM Trans. Web (TWEB)
  doi: 10.1145/3196248
– start-page: 698
  year: 2016
  ident: 10.1016/j.engappai.2024.108689_b2
  article-title: Uncertainty-sensitive reasoning for inferring sameas facts in linked data
– volume: 26
  year: 2013
  ident: 10.1016/j.engappai.2024.108689_b11
  article-title: Translating embeddings for modeling multi-relational data
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 51
  year: 2022
  ident: 10.1016/j.engappai.2024.108689_b33
  article-title: 3D CAD model retrieval based on sketch and unsupervised variational autoencoder
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2021.101427
– year: 2014
  ident: 10.1016/j.engappai.2024.108689_b34
  article-title: Position paper: Uncertainty reasoning for linked data
– year: 2019
  ident: 10.1016/j.engappai.2024.108689_b36
– start-page: 1703
  year: 2009
  ident: 10.1016/j.engappai.2024.108689_b12
  article-title: Mean reciprocal rank
– start-page: 733
  year: 2022
  ident: 10.1016/j.engappai.2024.108689_b18
  article-title: Encoder-decoder neural network with attention mechanism for types detection in linked data
– volume: 18
  start-page: 109
  issue: 1
  year: 2018
  ident: 10.1016/j.engappai.2024.108689_b23
  article-title: Linking datasets using semantic textual similarity
  publication-title: Cybern. Inf. Technol.
– start-page: 510
  year: 2013
  ident: 10.1016/j.engappai.2024.108689_b29
  article-title: Type inference on noisy RDF data
– start-page: 391
  year: 2017
  ident: 10.1016/j.engappai.2024.108689_b42
  article-title: Predicting object types in linked data by text classification
– volume: 35
  start-page: 413
  issue: 3
  year: 2021
  ident: 10.1016/j.engappai.2024.108689_b26
  article-title: LIMES: A framework for link discovery on the semantic web
  publication-title: KI-Künstliche Intell.
  doi: 10.1007/s13218-021-00713-x
– ident: 10.1016/j.engappai.2024.108689_b30
  doi: 10.1145/2851613.2851839
– year: 2021
  ident: 10.1016/j.engappai.2024.108689_b7
– ident: 10.1016/j.engappai.2024.108689_b40
  doi: 10.1145/3360901.3364425
– year: 2006
  ident: 10.1016/j.engappai.2024.108689_b6
– volume: 23
  start-page: 2259
  issue: 4
  year: 2020
  ident: 10.1016/j.engappai.2024.108689_b28
  article-title: Learning social representations with deep autoencoder for recommender system
  publication-title: World Wide Web
  doi: 10.1007/s11280-020-00793-z
– volume: 23
  start-page: 2715
  issue: 5
  year: 2020
  ident: 10.1016/j.engappai.2024.108689_b41
  article-title: Deep learning for heterogeneous medical data analysis
  publication-title: World Wide Web
  doi: 10.1007/s11280-019-00764-z
– volume: 55
  start-page: 108
  year: 2019
  ident: 10.1016/j.engappai.2024.108689_b1
  article-title: Linking and disambiguating entities across heterogeneous RDF graphs
  publication-title: J. Web Semant.
  doi: 10.1016/j.websem.2018.12.003
– year: 2016
  ident: 10.1016/j.engappai.2024.108689_b17
SSID ssj0003846
Score 2.4196358
Snippet In contemporary times, Linked Data has emerged as a prominent approach for publishing data on the internet. This data is typically represented in the form of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108689
SubjectTerms Attention mechanism
Deep learning
Linked data
Links prediction
Semantic links
Title Deep sequence to sequence semantic embedding with attention for entity linking in context of incomplete linked data
URI https://dx.doi.org/10.1016/j.engappai.2024.108689
Volume 134
WOSCitedRecordID wos001248564000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwMv3BHjJj_wFmUszs1-nGATIBhIDNS3yI5PUKctrZp22qT9eI5vSYBJAyFeIsut6zbfF_v49DvnEPJSZHmmWSbjXOPjhgxJYlUkTbwrcfcpJCht0zV9-1AeHvLZTHyeTC5DLMzZSdm2_PxcLP8r1NiHYJvQ2b-Au_9Q7MA2go5XhB2vfwT8G4BlFBTSxrTs2x2c4n2c1xGcKtC6d8OaFJttrzm0gbsXkS-qEFmdemv0IS67hNWgo6Vt34DWqg9uG9z7Q4LDaPzvuBUcrKwyydYJGaUCHXnRnWbg06br5LBhHMgVWO_PR1OvZbHxTgTvq2BZr5TzDrQQRDMolpwnksWJKH1GbLcO8zKNjfr2p4XauT1_W_Sd_-F4B9rv-LvkfMdMbUtIuepEvyTU_mImNPMZ-SxuzuIG2WJlLviUbO2925-973fylLtAr_AFRxHmV892tXEzMliO7pLb_qRB9xxD7pEJtPfJHX_qoH5N77ArFPYIfQ9IZzhEA2_oejG0A4dozyFqOER7DlHkEHUcop5DdN5SzyG6aOjAIeo4RA2HHpKvB_tHr9_GvjpHXKcJW8dNAxJ4Wde8VIXIeZFDDjIVWmmVaSiyJsG9s4EClMJTf6bSXDJAcxEykelUpY_ItF208JjQpExS1QAkAl9STGJbcJZoyZgAvqu3SR5ua1X71PWmgspJFTSKx1WAozJwVA6ObfKqH7d0yVuuHSECapU3QZ1pWSHZrhn75B_GPiW3huflGZmuVxt4Tm7WZ-t5t3rhefkD2ii3Dw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+sequence+to+sequence+semantic+embedding+with+attention+for+entity+linking+in+context+of+incomplete+linked+data&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Hamel%2C+Oussama&rft.au=Fareh%2C+Messaouda&rft.date=2024-08-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=134&rft_id=info:doi/10.1016%2Fj.engappai.2024.108689&rft.externalDocID=S0952197624008479
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon