A generalized minimal residual based iterative back propagation algorithm for polynomial nonlinear models

In this paper, a back propagation algorithm is proposed for polynomial nonlinear models using generalized minimal residual method. This algorithm, based on Arnoldi’s method, can be regarded as a modified gradient descent iterative algorithm, and provides several advantages over the traditional gradi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Systems & control letters Ročník 153; s. 104966
Hlavní autoři: Chen, Jing, Rong, Yingjiao, Zhu, Quanmin, Chandra, Budi, Zhong, Hongxiu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.07.2021
Témata:
ISSN:0167-6911, 1872-7956
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, a back propagation algorithm is proposed for polynomial nonlinear models using generalized minimal residual method. This algorithm, based on Arnoldi’s method, can be regarded as a modified gradient descent iterative algorithm, and provides several advantages over the traditional gradient descent iterative algorithm: (1) has less computational efforts for systems with missing data/large-scale systems; (2) does not require the eigenvalue calculation in step-length design; (3) adaptively computes the step-length in each iteration. Therefore, it can be employed for large-scale system identification. The feasibility and effectiveness of the proposed algorithm are established in theory and demonstrated by two simulation examples.
ISSN:0167-6911
1872-7956
DOI:10.1016/j.sysconle.2021.104966