Lightweight object detection algorithm for robots with improved YOLOv5
Robot object detection is important for the realisation of robot intelligence. Currently, deep learning-based object detection algorithms are used for robotic object detection. However, it faces some challenges in practical applications, such as the fact that robots frequently use resource-constrain...
Saved in:
| Published in: | Engineering applications of artificial intelligence Vol. 123; p. 106217 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.08.2023
|
| Subjects: | |
| ISSN: | 0952-1976, 1873-6769 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Robot object detection is important for the realisation of robot intelligence. Currently, deep learning-based object detection algorithms are used for robotic object detection. However, it faces some challenges in practical applications, such as the fact that robots frequently use resource-constrained devices, resulting in detection algorithms with long computation times and undesired detection rates. In order to address these concerns, this paper proposes a lightweight object detection algorithm for robots with an improved YOLOv5. To reduce the amount of processing required for feature extraction and increase the speed of detection, the C3Ghost and GhostConv modules have been introduced into the YOLOv5 backbone. The DWConv module was used in conjunction with the C3Ghost module in the YOLOv5 neck network to further reduce the number of model parameters and maintain accuracy. The CA (Coordinated Attention) module is also introduced to improve the extraction of features from detected objects and suppress irrelevant features, thus improving the algorithm’s detection accuracy. To verify the performance of the method, we tested it with a self-built dataset (4561 robot images in total) and the PascalVOC dataset respectively. The results show that compared with the YOLOv5s on the self-built dataset, the algorithm has a 54% decrease in FLOPs and a 52.53% decrease in the number of model parameters without a decrease in mAP (0.5). The effectiveness and superiority of the algorithm is demonstrated through case studies and comparisons.
•Lightweight C3Ghost and GhostConv modules are introduced in the YOLOv5 backbone network to achieve model compression and maintain detection accuracy and speed.•C3Ghost and DWConv modules are introduced in YOLOv5 neck network to further reduce model parameters and improve the speed of feature fusion.•CA (Coordinated attention) module is also introduced to enhance the extraction of relevant features and suppress irrelevant features to improve the detection accuracy of the algorithm.•To demonstrate the algorithm’s ability to solve real-world problems, we produced a dataset for the object detection task in the RoboMasterAI challenge hosted by DJI and experimentally verified that our proposed object detection algorithm is effective. |
|---|---|
| AbstractList | Robot object detection is important for the realisation of robot intelligence. Currently, deep learning-based object detection algorithms are used for robotic object detection. However, it faces some challenges in practical applications, such as the fact that robots frequently use resource-constrained devices, resulting in detection algorithms with long computation times and undesired detection rates. In order to address these concerns, this paper proposes a lightweight object detection algorithm for robots with an improved YOLOv5. To reduce the amount of processing required for feature extraction and increase the speed of detection, the C3Ghost and GhostConv modules have been introduced into the YOLOv5 backbone. The DWConv module was used in conjunction with the C3Ghost module in the YOLOv5 neck network to further reduce the number of model parameters and maintain accuracy. The CA (Coordinated Attention) module is also introduced to improve the extraction of features from detected objects and suppress irrelevant features, thus improving the algorithm’s detection accuracy. To verify the performance of the method, we tested it with a self-built dataset (4561 robot images in total) and the PascalVOC dataset respectively. The results show that compared with the YOLOv5s on the self-built dataset, the algorithm has a 54% decrease in FLOPs and a 52.53% decrease in the number of model parameters without a decrease in mAP (0.5). The effectiveness and superiority of the algorithm is demonstrated through case studies and comparisons.
•Lightweight C3Ghost and GhostConv modules are introduced in the YOLOv5 backbone network to achieve model compression and maintain detection accuracy and speed.•C3Ghost and DWConv modules are introduced in YOLOv5 neck network to further reduce model parameters and improve the speed of feature fusion.•CA (Coordinated attention) module is also introduced to enhance the extraction of relevant features and suppress irrelevant features to improve the detection accuracy of the algorithm.•To demonstrate the algorithm’s ability to solve real-world problems, we produced a dataset for the object detection task in the RoboMasterAI challenge hosted by DJI and experimentally verified that our proposed object detection algorithm is effective. |
| ArticleNumber | 106217 |
| Author | Liu, Gang Chen, Zhiyu Hu, Yanxin Guo, Jianwei Ni, Peng |
| Author_xml | – sequence: 1 givenname: Gang surname: Liu fullname: Liu, Gang email: lg@ccut.edu.cn organization: School of Computer Science and Engineering, Changchun University of Technology, Changchun, 130102, China – sequence: 2 givenname: Yanxin orcidid: 0000-0002-0800-7560 surname: Hu fullname: Hu, Yanxin email: 2202103079@stu.ccut.edu.cn organization: School of Computer Science and Engineering, Changchun University of Technology, Changchun, 130102, China – sequence: 3 givenname: Zhiyu orcidid: 0000-0001-8654-2369 surname: Chen fullname: Chen, Zhiyu email: chenzhiyu@ccut.edu.cn organization: School of Computer Science and Engineering, Changchun University of Technology, Changchun, 130102, China – sequence: 4 givenname: Jianwei orcidid: 0000-0003-2658-8845 surname: Guo fullname: Guo, Jianwei email: guojianwei@ccut.edu.cn organization: School of Computer Science and Engineering, Changchun University of Technology, Changchun, 130102, China – sequence: 5 givenname: Peng surname: Ni fullname: Ni, Peng email: nipeng@ccut.edu.cn organization: School of Applied Technology, Changchun University of Technology, Changchun, 130102, China |
| BookMark | eNqFkM1KAzEUhYNUsK2-guQFpuavmQm4UIpVYaAbXbgKmcxNm6GdDJnQ4ts7Q3Xjppt74MJ34HwzNGlDCwjdU7KghMqHZgHt1nSd8QtGGB-ektH8Ck1pkfNM5lJN0JSoJcuoyuUNmvV9QwjhhZBTtC79dpdOMF4cqgZswjWkIXxosdlvQ_Rpd8AuRBxDFVKPT8MD-0MXwxFq_LUpN8flLbp2Zt_D3W_O0ef65WP1lpWb1_fVc5lZTlnKQFaOuJwrTqQQppKOOy6WBbha1FA5q2oAmavKMQHguGLEGC6qwvIcOAc-R_Lca2Po-whOd9EfTPzWlOjRhm70nw092tBnGwP4-A-0PplxZIrG7y_jT2cchnFHD1H31kNrofZxcKXr4C9V_ACbwIPB |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2024_124942 crossref_primary_10_1186_s13007_025_01353_0 crossref_primary_10_1007_s12008_024_01769_3 crossref_primary_10_1016_j_engappai_2024_108700 crossref_primary_10_1016_j_isatra_2025_08_045 crossref_primary_10_1016_j_cropro_2024_106912 crossref_primary_10_1016_j_engappai_2024_108903 crossref_primary_10_1016_j_measurement_2024_116291 crossref_primary_10_3390_jmse11091658 crossref_primary_10_1007_s10664_025_10679_1 crossref_primary_10_1109_ACCESS_2025_3551892 crossref_primary_10_1007_s11227_025_07771_0 crossref_primary_10_3390_jmse13010066 crossref_primary_10_1002_ese3_70255 crossref_primary_10_1016_j_neucom_2025_131501 crossref_primary_10_1007_s00138_024_01611_6 crossref_primary_10_1038_s41598_025_95959_y crossref_primary_10_1016_j_jvcir_2024_104362 crossref_primary_10_1007_s11760_024_03369_w crossref_primary_10_1016_j_array_2025_100459 crossref_primary_10_1016_j_ecoinf_2024_102467 crossref_primary_10_1088_1361_6501_ad86db crossref_primary_10_1016_j_engappai_2025_111090 crossref_primary_10_1007_s11760_025_04276_4 crossref_primary_10_1016_j_engappai_2024_109077 crossref_primary_10_1088_1361_6501_ad3a05 crossref_primary_10_3389_fnbot_2023_1338104 crossref_primary_10_1016_j_engappai_2025_111247 crossref_primary_10_3390_act13090374 crossref_primary_10_1017_S0890060424000295 crossref_primary_10_3390_horticulturae10080852 crossref_primary_10_1016_j_neucom_2024_128670 crossref_primary_10_1016_j_foodp_2024_100042 crossref_primary_10_1016_j_imavis_2025_105441 crossref_primary_10_1016_j_compag_2023_108549 crossref_primary_10_1109_ACCESS_2024_3382817 crossref_primary_10_1016_j_fusengdes_2024_114532 crossref_primary_10_3389_fpls_2024_1490026 crossref_primary_10_1016_j_engappai_2024_108929 crossref_primary_10_1016_j_measurement_2024_116269 crossref_primary_10_3390_agronomy14081628 crossref_primary_10_1007_s11227_024_06319_y crossref_primary_10_1109_ACCESS_2024_3396224 crossref_primary_10_1016_j_bspc_2024_106399 crossref_primary_10_1016_j_engappai_2023_107513 crossref_primary_10_1038_s41598_024_58146_z crossref_primary_10_1109_TIM_2025_3551459 crossref_primary_10_1016_j_engappai_2024_110000 crossref_primary_10_1007_s40998_025_00834_1 crossref_primary_10_1109_LGRS_2024_3398727 crossref_primary_10_3390_s25175311 crossref_primary_10_3390_su151813550 crossref_primary_10_1016_j_atech_2025_101212 crossref_primary_10_1016_j_compag_2025_110061 crossref_primary_10_1016_j_engappai_2024_109145 crossref_primary_10_1016_j_mtcomm_2024_108710 crossref_primary_10_1016_j_snb_2025_138053 crossref_primary_10_1109_TIM_2024_3418082 crossref_primary_10_1007_s13042_024_02383_1 crossref_primary_10_3390_horticulturae11060585 crossref_primary_10_1016_j_compag_2024_109356 crossref_primary_10_1007_s11554_025_01695_x crossref_primary_10_1016_j_engappai_2025_111617 crossref_primary_10_1007_s11760_025_03883_5 crossref_primary_10_1016_j_engappai_2025_110006 crossref_primary_10_1109_ACCESS_2023_3339560 crossref_primary_10_3390_s23156738 crossref_primary_10_3390_ai5010005 crossref_primary_10_1016_j_rcim_2024_102791 crossref_primary_10_1038_s41598_024_64289_w crossref_primary_10_1109_JSEN_2024_3419806 crossref_primary_10_3390_w16111633 crossref_primary_10_1016_j_measurement_2024_114717 crossref_primary_10_1371_journal_pone_0324512 crossref_primary_10_3390_app14188187 crossref_primary_10_1007_s10586_025_05161_y crossref_primary_10_3390_s24237621 crossref_primary_10_1109_TIM_2024_3385846 crossref_primary_10_1016_j_compeleceng_2024_109924 crossref_primary_10_1088_1361_6501_ad9f8b crossref_primary_10_7717_peerj_cs_2932 crossref_primary_10_1007_s40031_024_01152_6 crossref_primary_10_1016_j_compag_2025_110194 crossref_primary_10_1016_j_neucom_2024_128775 crossref_primary_10_1109_ACCESS_2023_3282309 crossref_primary_10_1007_s43684_024_00080_y crossref_primary_10_3390_jimaging9110240 crossref_primary_10_1016_j_advengsoft_2025_103976 |
| Cites_doi | 10.1109/CVPR.2018.00442 10.1109/ACCESS.2020.3011502 10.1109/CVPR46437.2021.01350 10.1109/CVPR.2017.195 10.1007/978-3-030-01234-2_1 10.30630/joiv.6.1.785 10.1109/CVPR.2018.00913 10.1109/CVPR42600.2020.01079 10.1109/CVPRW50498.2020.00203 10.1109/CVPR.2016.91 10.1109/CVPR.2017.106 10.1109/ACCESS.2020.2981823 10.1109/TPAMI.2015.2389824 10.1109/CVPR46437.2021.01283 10.1109/CVPR42600.2020.00165 10.3390/electronics10182292 10.3390/machines10050294 10.1109/CVPR.2016.90 10.1108/IR-07-2019-0150 10.3390/s21062180 10.1109/ICCV.2015.169 10.1016/j.procs.2022.01.135 10.1109/CVPR42600.2020.01155 10.1109/CVPR.2018.00745 10.3390/su141912274 10.1109/CVPR.2018.00474 10.1109/ICCV.2019.00140 10.1109/CVPR.2018.00716 10.1109/CVPR.2017.690 10.1016/j.compag.2022.107194 10.1007/s11119-020-09754-y 10.1109/CVPR.2014.81 10.1007/978-3-030-01264-9_8 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2023.106217 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISSN | 1873-6769 |
| ExternalDocumentID | 10_1016_j_engappai_2023_106217 S0952197623004013 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c312t-e6bf0f73930644ab6f3f3458efd4debfc9dee679bf24eef3920aa34b8c37e33e3 |
| ISICitedReferencesCount | 92 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000980625700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Tue Nov 18 22:03:48 EST 2025 Sat Nov 29 07:10:04 EST 2025 Fri Feb 23 02:36:11 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Attention mechanisms GhostBottleneck Robot object detection YOLOv5 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-e6bf0f73930644ab6f3f3458efd4debfc9dee679bf24eef3920aa34b8c37e33e3 |
| ORCID | 0000-0001-8654-2369 0000-0002-0800-7560 0000-0003-2658-8845 |
| ParticipantIDs | crossref_primary_10_1016_j_engappai_2023_106217 crossref_citationtrail_10_1016_j_engappai_2023_106217 elsevier_sciencedirect_doi_10_1016_j_engappai_2023_106217 |
| PublicationCentury | 2000 |
| PublicationDate | August 2023 2023-08-00 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Li, Du, Chen, Gong, Liu, Zhou, He (b22) 2021 Zhang, Cisse, Dauphin, Lopez-Paz (b50) 2017 Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q., 2020b. Supplementary material for ‘ECA-Net: Efficient channel attention for deep convolutional neural networks. In: Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, WA, USA. pp. 13–19. Chollet, F., 2017. Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1251–1258. Ren, He, Girshick, Sun (b37) 2015; 28 Krizhevsky, Sutskever, Hinton (b20) 2012; 25 Zhang, X., Zhou, X., Lin, M., Sun, J., 2018b. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 6848–6856. Redmon, J., Farhadi, A., 2017. YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7263–7271. Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (b24) 2016 He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C., 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4510–4520. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J., 2018. Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 8759–8768. Xu, Jia, Liu, Zhao, Sun (b48) 2020; 8 He, Zhang, Ren, Sun (b12) 2015; 37 Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M., 2021. Scaled-yolov4: Scaling cross stage partial network. In: Proceedings of the IEEE/Cvf Conference on Computer Vision and Pattern Recognition. pp. 13029–13038. Yue, Li, Shimizu, Kawamura, Meng (b49) 2022; 10 Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., et al., 2019. Searching for mobilenetv3. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 1314–1324. Kulshreshtha, Chandra, Randhawa, Tsaramirsis, Khadidos, Khadidos (b21) 2021; 10 Zhang, Li, Ren, Xu, Song, Liu (b52) 2019 Ramachandran, Zoph, Le (b33) 2017 Chen, Chen, Zhou (b4) 2021 . Srivastava, Khari, Crespo, Chaudhary, Arora (b39) 2021 Rajagopal, Joshi, Ramachandran, Subhalakshmi, Khari, Jha, Shankar, You (b32) 2020; 8 Zhang, Guo, Wu, Tian, Tang, Guo (b51) 2022; 14 Redmon, Farhadi (b36) 2018 Woo, S., Park, J., Lee, J.-Y., Kweon, I.S., 2018. Cbam: Convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 3–19. Adarsh, Rathi, Kumar (b1) 2020 Loshchilov, Hutter (b27) 2016 Wang, Cheng, Huang, Cai, Zhang, Yuan (b44) 2022; 199 Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z., 2018a. Single-shot refinement neural network for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4203–4212. NVIDIA (b30) 2021 Zhang, Tan, Zhao, Liang, Liu, Zhong, Fan (b53) 2020 Cahyo, Utaminingrum (b3) 2022; 6 Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S., 2017. Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2117–2125. Fu, Feng, Wu, Liu, Gao, Majeed, Al-Mallahi, Zhang, Li, Cui (b7) 2021; 22 Hou, Q., Zhou, D., Feng, J., 2021. Coordinate attention for efficient mobile network design. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 13713–13722, doi:. Bochkovskiy, Wang, Liao (b2) 2020 Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 779–788. Pillai, Chaudhary, Khari, Crespo (b31) 2021 Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, Adam (b16) 2017 Girshick, R., 2015. Fast r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 1440–1448. Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7132–7141. Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., Xu, C., 2020. Ghostnet: More features from cheap operations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1580–1589. Girshick, R., Donahue, J., Darrell, T., Malik, J., 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 580–587. Ultralytics (b41) 2021 Tan, M., Pang, R., Le, Q.V., 2020. Efficientdet: Scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 10781–10790. Wang, C.-Y., Liao, H.-Y.M., Wu, Y.-H., Chen, P.-Y., Hsieh, J.-W., Yeh, I.-H., 2020a. CSPNet: A new backbone that can enhance learning capability of CNN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. pp. 390–391. Liu, Szirányi (b26) 2021; 21 Wang, Bochkovskiy, Liao (b43) 2022 Ge, Liu, Wang, Li, Sun (b8) 2021 Jiang, Ergu, Liu, Cai, Ma (b19) 2022; 199 Mohammadi Kazaj (b29) 2021 Ma, N., Zhang, X., Zheng, H.-T., Sun, J., 2018. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 116–131. Jian, Mingrui, Xifeng (b18) 2020 Dai, Li, He, Sun (b6) 2016; 29 10.1016/j.engappai.2023.106217_b34 Liu (10.1016/j.engappai.2023.106217_b26) 2021; 21 10.1016/j.engappai.2023.106217_b35 Zhang (10.1016/j.engappai.2023.106217_b51) 2022; 14 Ren (10.1016/j.engappai.2023.106217_b37) 2015; 28 10.1016/j.engappai.2023.106217_b38 Howard (10.1016/j.engappai.2023.106217_b16) 2017 Chen (10.1016/j.engappai.2023.106217_b4) 2021 10.1016/j.engappai.2023.106217_b5 Bochkovskiy (10.1016/j.engappai.2023.106217_b2) 2020 Li (10.1016/j.engappai.2023.106217_b22) 2021 10.1016/j.engappai.2023.106217_b9 Krizhevsky (10.1016/j.engappai.2023.106217_b20) 2012; 25 10.1016/j.engappai.2023.106217_b23 Wang (10.1016/j.engappai.2023.106217_b43) 2022 10.1016/j.engappai.2023.106217_b25 10.1016/j.engappai.2023.106217_b28 Srivastava (10.1016/j.engappai.2023.106217_b39) 2021 Zhang (10.1016/j.engappai.2023.106217_b53) 2020 Wang (10.1016/j.engappai.2023.106217_b44) 2022; 199 Xu (10.1016/j.engappai.2023.106217_b48) 2020; 8 Loshchilov (10.1016/j.engappai.2023.106217_b27) 2016 Ge (10.1016/j.engappai.2023.106217_b8) 2021 10.1016/j.engappai.2023.106217_b11 10.1016/j.engappai.2023.106217_b55 10.1016/j.engappai.2023.106217_b14 10.1016/j.engappai.2023.106217_b13 NVIDIA (10.1016/j.engappai.2023.106217_b30) 2021 10.1016/j.engappai.2023.106217_b15 Zhang (10.1016/j.engappai.2023.106217_b50) 2017 Dai (10.1016/j.engappai.2023.106217_b6) 2016; 29 10.1016/j.engappai.2023.106217_b17 Ultralytics (10.1016/j.engappai.2023.106217_b41) 2021 Fu (10.1016/j.engappai.2023.106217_b7) 2021; 22 Adarsh (10.1016/j.engappai.2023.106217_b1) 2020 Rajagopal (10.1016/j.engappai.2023.106217_b32) 2020; 8 Yue (10.1016/j.engappai.2023.106217_b49) 2022; 10 Jian (10.1016/j.engappai.2023.106217_b18) 2020 Redmon (10.1016/j.engappai.2023.106217_b36) 2018 10.1016/j.engappai.2023.106217_b10 10.1016/j.engappai.2023.106217_b54 10.1016/j.engappai.2023.106217_b45 10.1016/j.engappai.2023.106217_b47 10.1016/j.engappai.2023.106217_b46 Kulshreshtha (10.1016/j.engappai.2023.106217_b21) 2021; 10 He (10.1016/j.engappai.2023.106217_b12) 2015; 37 Mohammadi Kazaj (10.1016/j.engappai.2023.106217_b29) 2021 Pillai (10.1016/j.engappai.2023.106217_b31) 2021 Zhang (10.1016/j.engappai.2023.106217_b52) 2019 Liu (10.1016/j.engappai.2023.106217_b24) 2016 Ramachandran (10.1016/j.engappai.2023.106217_b33) 2017 Jiang (10.1016/j.engappai.2023.106217_b19) 2022; 199 Cahyo (10.1016/j.engappai.2023.106217_b3) 2022; 6 10.1016/j.engappai.2023.106217_b40 10.1016/j.engappai.2023.106217_b42 |
| References_xml | – year: 2020 ident: b2 article-title: Yolov4: Optimal speed and accuracy of object detection – reference: Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M., 2021. Scaled-yolov4: Scaling cross stage partial network. In: Proceedings of the IEEE/Cvf Conference on Computer Vision and Pattern Recognition. pp. 13029–13038. – year: 2017 ident: b33 article-title: Searching for activation functions – reference: Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C., 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4510–4520. – reference: Hou, Q., Zhou, D., Feng, J., 2021. Coordinate attention for efficient mobile network design. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 13713–13722, doi:. – year: 2020 ident: b53 article-title: A fast detection and grasping method for mobile manipulator based on improved faster R-CNN publication-title: Ind. Robot: Int. J. Robot. Res. Appl. – reference: Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., et al., 2019. Searching for mobilenetv3. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 1314–1324. – year: 2021 ident: b29 article-title: yolov5-gradcam – volume: 10 year: 2021 ident: b21 article-title: OATCR: Outdoor autonomous trash-collecting robot design using YOLOv4-tiny publication-title: Electronics – year: 2021 ident: b39 article-title: Concepts and Real-Time Applications of Deep Learning – volume: 8 start-page: 55289 year: 2020 end-page: 55299 ident: b48 article-title: Fast method of detecting tomatoes in a complex scene for picking robots publication-title: IEEE Access – reference: Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S., 2017. Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2117–2125. – year: 2021 ident: b41 article-title: YOLOv5 – volume: 37 start-page: 1904 year: 2015 end-page: 1916 ident: b12 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Girshick, R., 2015. Fast r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 1440–1448. – start-page: 21 year: 2016 end-page: 37 ident: b24 article-title: Ssd: Single shot multibox detector publication-title: European Conference on Computer Vision – reference: Ma, N., Zhang, X., Zheng, H.-T., Sun, J., 2018. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 116–131. – year: 2016 ident: b27 article-title: Sgdr: Stochastic gradient descent with warm restarts – start-page: 1 year: 2021 end-page: 12 ident: b31 article-title: Real-time image enhancement for an automatic automobile accident detection through CCTV using deep learning publication-title: Soft Comput. – volume: 22 start-page: 754 year: 2021 end-page: 776 ident: b7 article-title: Fast and accurate detection of kiwifruit in orchard using improved YOLOv3-tiny model publication-title: Precis. Agric. – start-page: 487 year: 2020 end-page: 492 ident: b18 article-title: A fruit detection algorithm based on r-fcn in natural scene publication-title: 2020 Chinese Control and Decision Conference (CCDC) – volume: 25 year: 2012 ident: b20 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – year: 2017 ident: b16 article-title: Mobilenets: Efficient convolutional neural networks for mobile vision applications – year: 2021 ident: b8 article-title: Yolox: Exceeding yolo series in 2021 – reference: Chollet, F., 2017. Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1251–1258. – reference: Woo, S., Park, J., Lee, J.-Y., Kweon, I.S., 2018. Cbam: Convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 3–19. – year: 2022 ident: b43 article-title: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors – volume: 10 start-page: 294 year: 2022 ident: b49 article-title: YOLO-GD: a deep learning-based object detection algorithm for empty-dish recycling robots publication-title: Machines – start-page: 11 year: 2021 end-page: 22 ident: b4 article-title: Object detection of basketball robot based on MobileNet-SSD publication-title: Intelligent Equipment, Robots, and Vehicles – volume: 29 year: 2016 ident: b6 article-title: R-fcn: Object detection via region-based fully convolutional networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 199 start-page: 1066 year: 2022 end-page: 1073 ident: b19 article-title: A Review of Yolo algorithm developments publication-title: Procedia Comput. Sci. – start-page: 272 year: 2021 end-page: 278 ident: b22 article-title: Design of multifunctional seedbed planting robot based on MobileNetV2-SSD publication-title: 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA) – start-page: 118 year: 2019 end-page: 122 ident: b52 article-title: An expression recognition method on robots based on mobilenet V2-SSD publication-title: 2019 6th International Conference on Systems and Informatics (ICSAI) – volume: 28 year: 2015 ident: b37 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks publication-title: Adv. Neural Inf. Process. Syst. – year: 2021 ident: b30 article-title: NVIDIA tensorrt – volume: 199 year: 2022 ident: b44 article-title: A deep learning approach incorporating YOLO v5 and attention mechanisms for field real-time detection of the invasive weed solanum rostratum dunal seedlings publication-title: Comput. Electron. Agric. – reference: Wang, C.-Y., Liao, H.-Y.M., Wu, Y.-H., Chen, P.-Y., Hsieh, J.-W., Yeh, I.-H., 2020a. CSPNet: A new backbone that can enhance learning capability of CNN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. pp. 390–391. – reference: Zhang, X., Zhou, X., Lin, M., Sun, J., 2018b. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 6848–6856. – reference: Tan, M., Pang, R., Le, Q.V., 2020. Efficientdet: Scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 10781–10790. – year: 2017 ident: b50 article-title: mixup: Beyond empirical risk minimization – reference: Liu, S., Qi, L., Qin, H., Shi, J., Jia, J., 2018. Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 8759–8768. – reference: Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., Xu, C., 2020. Ghostnet: More features from cheap operations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1580–1589. – reference: Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 779–788. – volume: 8 start-page: 135383 year: 2020 end-page: 135393 ident: b32 article-title: A deep learning model based on multi-objective particle swarm optimization for scene classification in unmanned aerial vehicles publication-title: IEEE Access – reference: Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q., 2020b. Supplementary material for ‘ECA-Net: Efficient channel attention for deep convolutional neural networks. In: Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, WA, USA. pp. 13–19. – volume: 6 start-page: 117 year: 2022 end-page: 123 ident: b3 article-title: Autonomous robot system based on room nameplate recognition using YOLOv4 method on jetson nano 2GB publication-title: JOIV: Int. J. Inform. Vis. – reference: . – volume: 14 start-page: 12274 year: 2022 ident: b51 article-title: Real-time vehicle detection based on improved YOLO v5 publication-title: Sustainability – reference: He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778. – reference: Redmon, J., Farhadi, A., 2017. YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7263–7271. – reference: Girshick, R., Donahue, J., Darrell, T., Malik, J., 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 580–587. – reference: Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7132–7141. – start-page: 687 year: 2020 end-page: 694 ident: b1 article-title: YOLO v3-Tiny: Object Detection and Recognition using one stage improved model publication-title: 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS) – volume: 21 start-page: 2180 year: 2021 ident: b26 article-title: Real-time human detection and gesture recognition for on-board uav rescue publication-title: Sensors – reference: Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z., 2018a. Single-shot refinement neural network for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4203–4212. – year: 2018 ident: b36 article-title: Yolov3: An incremental improvement – volume: 29 year: 2016 ident: 10.1016/j.engappai.2023.106217_b6 article-title: R-fcn: Object detection via region-based fully convolutional networks publication-title: Adv. Neural Inf. Process. Syst. – year: 2017 ident: 10.1016/j.engappai.2023.106217_b16 – year: 2016 ident: 10.1016/j.engappai.2023.106217_b27 – start-page: 687 year: 2020 ident: 10.1016/j.engappai.2023.106217_b1 article-title: YOLO v3-Tiny: Object Detection and Recognition using one stage improved model – year: 2021 ident: 10.1016/j.engappai.2023.106217_b30 – start-page: 11 year: 2021 ident: 10.1016/j.engappai.2023.106217_b4 article-title: Object detection of basketball robot based on MobileNet-SSD – ident: 10.1016/j.engappai.2023.106217_b54 doi: 10.1109/CVPR.2018.00442 – volume: 8 start-page: 135383 year: 2020 ident: 10.1016/j.engappai.2023.106217_b32 article-title: A deep learning model based on multi-objective particle swarm optimization for scene classification in unmanned aerial vehicles publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3011502 – start-page: 1 year: 2021 ident: 10.1016/j.engappai.2023.106217_b31 article-title: Real-time image enhancement for an automatic automobile accident detection through CCTV using deep learning publication-title: Soft Comput. – ident: 10.1016/j.engappai.2023.106217_b14 doi: 10.1109/CVPR46437.2021.01350 – start-page: 118 year: 2019 ident: 10.1016/j.engappai.2023.106217_b52 article-title: An expression recognition method on robots based on mobilenet V2-SSD – ident: 10.1016/j.engappai.2023.106217_b5 doi: 10.1109/CVPR.2017.195 – start-page: 272 year: 2021 ident: 10.1016/j.engappai.2023.106217_b22 article-title: Design of multifunctional seedbed planting robot based on MobileNetV2-SSD – ident: 10.1016/j.engappai.2023.106217_b47 doi: 10.1007/978-3-030-01234-2_1 – year: 2017 ident: 10.1016/j.engappai.2023.106217_b33 – volume: 6 start-page: 117 issue: 1 year: 2022 ident: 10.1016/j.engappai.2023.106217_b3 article-title: Autonomous robot system based on room nameplate recognition using YOLOv4 method on jetson nano 2GB publication-title: JOIV: Int. J. Inform. Vis. doi: 10.30630/joiv.6.1.785 – ident: 10.1016/j.engappai.2023.106217_b25 doi: 10.1109/CVPR.2018.00913 – ident: 10.1016/j.engappai.2023.106217_b40 doi: 10.1109/CVPR42600.2020.01079 – ident: 10.1016/j.engappai.2023.106217_b45 doi: 10.1109/CVPRW50498.2020.00203 – start-page: 487 year: 2020 ident: 10.1016/j.engappai.2023.106217_b18 article-title: A fruit detection algorithm based on r-fcn in natural scene – ident: 10.1016/j.engappai.2023.106217_b34 doi: 10.1109/CVPR.2016.91 – ident: 10.1016/j.engappai.2023.106217_b23 doi: 10.1109/CVPR.2017.106 – year: 2021 ident: 10.1016/j.engappai.2023.106217_b8 – volume: 8 start-page: 55289 year: 2020 ident: 10.1016/j.engappai.2023.106217_b48 article-title: Fast method of detecting tomatoes in a complex scene for picking robots publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2981823 – volume: 37 start-page: 1904 issue: 9 year: 2015 ident: 10.1016/j.engappai.2023.106217_b12 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2389824 – year: 2017 ident: 10.1016/j.engappai.2023.106217_b50 – ident: 10.1016/j.engappai.2023.106217_b42 doi: 10.1109/CVPR46437.2021.01283 – ident: 10.1016/j.engappai.2023.106217_b11 doi: 10.1109/CVPR42600.2020.00165 – volume: 10 issue: 18 year: 2021 ident: 10.1016/j.engappai.2023.106217_b21 article-title: OATCR: Outdoor autonomous trash-collecting robot design using YOLOv4-tiny publication-title: Electronics doi: 10.3390/electronics10182292 – volume: 10 start-page: 294 issue: 5 year: 2022 ident: 10.1016/j.engappai.2023.106217_b49 article-title: YOLO-GD: a deep learning-based object detection algorithm for empty-dish recycling robots publication-title: Machines doi: 10.3390/machines10050294 – ident: 10.1016/j.engappai.2023.106217_b13 doi: 10.1109/CVPR.2016.90 – year: 2020 ident: 10.1016/j.engappai.2023.106217_b53 article-title: A fast detection and grasping method for mobile manipulator based on improved faster R-CNN publication-title: Ind. Robot: Int. J. Robot. Res. Appl. doi: 10.1108/IR-07-2019-0150 – volume: 21 start-page: 2180 issue: 6 year: 2021 ident: 10.1016/j.engappai.2023.106217_b26 article-title: Real-time human detection and gesture recognition for on-board uav rescue publication-title: Sensors doi: 10.3390/s21062180 – year: 2021 ident: 10.1016/j.engappai.2023.106217_b29 – year: 2022 ident: 10.1016/j.engappai.2023.106217_b43 – volume: 28 year: 2015 ident: 10.1016/j.engappai.2023.106217_b37 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.engappai.2023.106217_b9 doi: 10.1109/ICCV.2015.169 – volume: 199 start-page: 1066 year: 2022 ident: 10.1016/j.engappai.2023.106217_b19 article-title: A Review of Yolo algorithm developments publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2022.01.135 – ident: 10.1016/j.engappai.2023.106217_b46 doi: 10.1109/CVPR42600.2020.01155 – ident: 10.1016/j.engappai.2023.106217_b17 doi: 10.1109/CVPR.2018.00745 – year: 2018 ident: 10.1016/j.engappai.2023.106217_b36 – volume: 14 start-page: 12274 issue: 19 year: 2022 ident: 10.1016/j.engappai.2023.106217_b51 article-title: Real-time vehicle detection based on improved YOLO v5 publication-title: Sustainability doi: 10.3390/su141912274 – ident: 10.1016/j.engappai.2023.106217_b38 doi: 10.1109/CVPR.2018.00474 – ident: 10.1016/j.engappai.2023.106217_b15 doi: 10.1109/ICCV.2019.00140 – volume: 25 year: 2012 ident: 10.1016/j.engappai.2023.106217_b20 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – start-page: 21 year: 2016 ident: 10.1016/j.engappai.2023.106217_b24 article-title: Ssd: Single shot multibox detector – ident: 10.1016/j.engappai.2023.106217_b55 doi: 10.1109/CVPR.2018.00716 – year: 2021 ident: 10.1016/j.engappai.2023.106217_b39 – ident: 10.1016/j.engappai.2023.106217_b35 doi: 10.1109/CVPR.2017.690 – volume: 199 year: 2022 ident: 10.1016/j.engappai.2023.106217_b44 article-title: A deep learning approach incorporating YOLO v5 and attention mechanisms for field real-time detection of the invasive weed solanum rostratum dunal seedlings publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107194 – year: 2020 ident: 10.1016/j.engappai.2023.106217_b2 – volume: 22 start-page: 754 issue: 3 year: 2021 ident: 10.1016/j.engappai.2023.106217_b7 article-title: Fast and accurate detection of kiwifruit in orchard using improved YOLOv3-tiny model publication-title: Precis. Agric. doi: 10.1007/s11119-020-09754-y – ident: 10.1016/j.engappai.2023.106217_b10 doi: 10.1109/CVPR.2014.81 – year: 2021 ident: 10.1016/j.engappai.2023.106217_b41 – ident: 10.1016/j.engappai.2023.106217_b28 doi: 10.1007/978-3-030-01264-9_8 |
| SSID | ssj0003846 |
| Score | 2.6197824 |
| Snippet | Robot object detection is important for the realisation of robot intelligence. Currently, deep learning-based object detection algorithms are used for robotic... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106217 |
| SubjectTerms | Attention mechanisms Deep learning GhostBottleneck Robot object detection YOLOv5 |
| Title | Lightweight object detection algorithm for robots with improved YOLOv5 |
| URI | https://dx.doi.org/10.1016/j.engappai.2023.106217 |
| Volume | 123 |
| WOSCitedRecordID | wos000980625700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6769 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003846 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbQlgMX3ojykg_cVilZOw_7WFWtAK1aJApauER5jNtUJamy2bL8e8avbAqVCkJcrMiS48TzZTyefDNDyOsId01Z5DKoYiaDSMUiEBU2ZZgwWcoqLE1Jls_z9PBQLBbyg6MOLU05gbRpxHotL_6rqLEPha1DZ_9C3MNNsQOvUejYotix_SPBz_Vx-7vxeE7bQrtZphX04EqCn5-0Xd2ffjP0wq4tWh_fVhvvApqfX47mR5fxFY_9JmfhdPzD23AIOkM2MqU_Rtk9B55PvTKe99xtkAZARu3nzboegLnnYkS-ntY_VgMlaGX_CiGA8XXG7gnGB3Kc85n5uJkNSck6H1kwk6lLgm1Vr0h5oAm3V3SzDUb-Tc9bl8PZDjQn-N55vaOnxu6E2UjQX3Jof9QT6vmYTjAW6irHWyyNpZiQrd13-4v3w-bNhY3t8g84Ciq_frbr7ZmRjXJ8n9x1hwu6a0HxgNyC5iG55w4a1KnxJXb5Wh6-7xE5GMGGWtjQATZ0gA1F2FALG6phQz1sqIXNY_LpYP94723gamwEJZ-xPoCkUKHSaRHRNo3yIlFc8SgWoKqogkLh5wqQpLJQLAJQaE2Hec6jQpQ8Bc6BPyGTpm3gKaGCzwAEU2mRVmiWh1LJGQi0CPNZCUyqbRL7lcpKl4Be10E5zzzT8CzzK5zpFc7sCm-TN8O4C5uC5cYR0gsic4akNRAzxM8NY5_9w9jn5M7mE3hBJn23gpfkdnnZ18vulYPaT3jOnYs |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lightweight+object+detection+algorithm+for+robots+with+improved+YOLOv5&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Liu%2C+Gang&rft.au=Hu%2C+Yanxin&rft.au=Chen%2C+Zhiyu&rft.au=Guo%2C+Jianwei&rft.date=2023-08-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.eissn=1873-6769&rft.volume=123&rft_id=info:doi/10.1016%2Fj.engappai.2023.106217&rft.externalDocID=S0952197623004013 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |