On quasi-morphic modules
An R-module M is called quasi-morphic if for any f∈EndR(M), there exist g,h∈EndR(M) such that Imf=Kerg and Kerf=Imh. In addition, MR is said to be morphic whenever g=h in the above definition. The main objective of this paper is investigating quasi-morphic property for several classes of modules. Fi...
Uložené v:
| Vydané v: | Journal of algebra Ročník 636; s. 757 - 778 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
15.12.2023
|
| Predmet: | |
| ISSN: | 0021-8693, 1090-266X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | An R-module M is called quasi-morphic if for any f∈EndR(M), there exist g,h∈EndR(M) such that Imf=Kerg and Kerf=Imh. In addition, MR is said to be morphic whenever g=h in the above definition. The main objective of this paper is investigating quasi-morphic property for several classes of modules. First we obtain general properties of quasi-morphic modules via exact sequence approach. Moreover, we investigate conditions under which a finite length quasi-morphic module is morphic. As a result, we show that for uniserial finite length modules, the notions of morphic and quasi-morphic coincide. Over a principal ideal domain R, direct sums of cyclic modules which are (quasi-)morphic are characterized. Among applications of our results, nonsingular extending (quasi-)morphic modules are characterized completely. We also prove that over a commutative Noetherian domain R which is not a field, quasi-morphic nonsingular extending modules are precisely direct sums of copies of Q (the quotient field of R). (Quasi-)Morphic singular extending abelian groups are also characterized. |
|---|---|
| ISSN: | 0021-8693 1090-266X |
| DOI: | 10.1016/j.jalgebra.2023.09.010 |