Temporal stability and non-unique solution of reacting Eyring Powell flows over shrinking wedges using neural networks

In this paper, author presents an innovative artificial intelligence techniques based on deep learning simulation algorithms due to wide range of applications in science, robotics and engineering. The deep learning simulation algorithm using the Levenberg-Marquardt Scheme with Back Propagation Neura...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering applications of artificial intelligence Ročník 141; s. 109828
Hlavní autoři: Khan, M.I., Zeeshan, A., Arain, M.B., Alqahtani, A.S., Malik, M.Y.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.02.2025
Témata:
ISSN:0952-1976
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, author presents an innovative artificial intelligence techniques based on deep learning simulation algorithms due to wide range of applications in science, robotics and engineering. The deep learning simulation algorithm using the Levenberg-Marquardt Scheme with Back Propagation Neural Networks (LMS-BPNN) is evaluated in the flow investigation of the chemically reacting non-Newtonian fluid. An efficient similarity variable is applied to change Partial Differential Equations (PDEs) of a considered flow problem into dimensionless Ordinary Differential Equations (ODEs). An error is found to be 10−4 with function fit for scenarios 1–5, while performance in terms of mean squared error is found to be 10−10. It is seen that flow response output i.e. f′(η), θ(η) and ϕ(η) meet boundary requirements for different scenarios 1–5 with the deep learning-based technique LMS-BPNN. The dual solution is evaluated for flow response output parameter i.e. Cfx, Nux and Shx for different parameters with the proposed LMS-BPNN. The dual nature of Cfx is calculated for three cases of scenario 1, and the critical value is found to be −0.96195, −1.0581, and −1.11. The dual solution of Shx is calculated for various values of Kc=0.2,0.4,0.6, and it is found that λc=−1.1175 remains the same. The perturbation scheme is applied to the boundary layer problem to obtain the eigenvalues problem. The unsteady solution f(η,τ) converges to steady solution fo(η) for τ→∞ when γ≥0. However, an unsteady solution f(η,τ) diverges to a steady solution fo(η) for τ→∞ when γ<0. It is found that the boundary layer thickness for the second (lower branch) solution is higher than the first (upper branch) solution. This investigation is the evidence that the first (upper branch) solution is stable and reliable.
AbstractList In this paper, author presents an innovative artificial intelligence techniques based on deep learning simulation algorithms due to wide range of applications in science, robotics and engineering. The deep learning simulation algorithm using the Levenberg-Marquardt Scheme with Back Propagation Neural Networks (LMS-BPNN) is evaluated in the flow investigation of the chemically reacting non-Newtonian fluid. An efficient similarity variable is applied to change Partial Differential Equations (PDEs) of a considered flow problem into dimensionless Ordinary Differential Equations (ODEs). An error is found to be 10−4 with function fit for scenarios 1–5, while performance in terms of mean squared error is found to be 10−10. It is seen that flow response output i.e. f′(η), θ(η) and ϕ(η) meet boundary requirements for different scenarios 1–5 with the deep learning-based technique LMS-BPNN. The dual solution is evaluated for flow response output parameter i.e. Cfx, Nux and Shx for different parameters with the proposed LMS-BPNN. The dual nature of Cfx is calculated for three cases of scenario 1, and the critical value is found to be −0.96195, −1.0581, and −1.11. The dual solution of Shx is calculated for various values of Kc=0.2,0.4,0.6, and it is found that λc=−1.1175 remains the same. The perturbation scheme is applied to the boundary layer problem to obtain the eigenvalues problem. The unsteady solution f(η,τ) converges to steady solution fo(η) for τ→∞ when γ≥0. However, an unsteady solution f(η,τ) diverges to a steady solution fo(η) for τ→∞ when γ<0. It is found that the boundary layer thickness for the second (lower branch) solution is higher than the first (upper branch) solution. This investigation is the evidence that the first (upper branch) solution is stable and reliable.
ArticleNumber 109828
Author Khan, M.I.
Alqahtani, A.S.
Malik, M.Y.
Zeeshan, A.
Arain, M.B.
Author_xml – sequence: 1
  givenname: M.I.
  surname: Khan
  fullname: Khan, M.I.
  organization: Department of Mathematics and Statistics, Faculty of Sciences, International Islamic University, Islamabad, 44000, Pakistan
– sequence: 2
  givenname: A.
  orcidid: 0000-0002-2641-1575
  surname: Zeeshan
  fullname: Zeeshan, A.
  email: ahmad.zeeshan@iiu.edu.pk
  organization: Department of Mathematics and Statistics, Faculty of Sciences, International Islamic University, Islamabad, 44000, Pakistan
– sequence: 3
  givenname: M.B.
  orcidid: 0000-0002-0506-7920
  surname: Arain
  fullname: Arain, M.B.
  organization: State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
– sequence: 4
  givenname: A.S.
  surname: Alqahtani
  fullname: Alqahtani, A.S.
  organization: Department of Mathematics, College of Sciences, King Khalid University, Abha, 61413, Saudi Arabia
– sequence: 5
  givenname: M.Y.
  surname: Malik
  fullname: Malik, M.Y.
  organization: Department of Mathematics, College of Sciences, King Khalid University, Abha, 61413, Saudi Arabia
BookMark eNqFkM1OwzAQhH0oEm3hFZBfIMXOryNxAFXlR6oEh3K2nHhd3KZ2sJ1GfXsSFS5celrtjGZW-83QxFgDCN1RsqCE5ve7BZitaFuhFzGJ00EsWcwmaErKLI5oWeTXaOb9jhCSsDSfouMGDq11osE-iEo3OpywMBIPvVFn9HcH2NumC9oabBV2IOqgzRavTm4cH7aHpsGqsb3H9ggO-6_B2I9eD3ILHnd-XAx04xEDobdu72_QlRKNh9vfOUefz6vN8jVav7-8LZ_WUZ3QOESVpKUsWMIKmUlGKpVKmqZFQRVJIE8py2SZsSpRmYzloENapFVVZblSDFQGyRzl597aWe8dKN46fRDuxCnhIzG-43_E-EiMn4kNwYd_wVoHMWIITujmcvzxHIfhuaMGx32twdQgtYM6cGn1pYofWD6T2A
CitedBy_id crossref_primary_10_1016_j_cjph_2025_02_001
crossref_primary_10_1002_zamm_70193
crossref_primary_10_1016_j_tsep_2025_103697
crossref_primary_10_1016_j_ijft_2025_101382
crossref_primary_10_1016_j_icheatmasstransfer_2025_109569
crossref_primary_10_1007_s41939_025_00869_1
crossref_primary_10_1007_s41939_025_01017_5
Cites_doi 10.17576/jsm-2019-4801-28
10.3390/sym12020276
10.1038/s41598-022-14384-7
10.1016/j.ijmecsci.2015.11.018
10.1016/j.csite.2018.11.007
10.1016/j.cjph.2020.02.002
10.1016/j.jppr.2020.03.001
10.3390/math12101420
10.1166/jon.2019.1660
10.1016/j.aej.2020.10.020
10.1016/j.ijthermalsci.2016.06.003
10.1016/j.rinp.2017.08.020
10.1063/1.4947130
10.1016/j.ijheatmasstransfer.2012.07.033
10.1016/j.csite.2023.103086
10.1016/j.icheatmasstransfer.2021.105799
10.1016/j.ijengsci.2006.04.005
10.17576/jsm-2017-4609-40
10.1016/j.tsep.2017.09.003
10.1007/s10973-023-12699-9
10.3390/pr11092736
10.1166/jon.2015.1177
10.1007/BF01251888
10.1016/j.molliq.2016.05.022
10.1016/j.jtice.2022.104510
10.1063/1.4943398
10.1016/j.triboint.2024.110182
10.1038/s41598-018-31777-9
10.1016/j.aej.2017.08.007
10.1108/HFF-03-2023-0135
10.1016/j.applthermaleng.2016.10.159
10.1007/s10483-020-2584-7
10.1016/j.cmpb.2016.07.019
10.1142/S0217979224500462
10.1016/j.imu.2017.07.006
10.1002/htj.22753
10.1515/ijcre-2014-0090
10.1016/j.powtec.2020.11.043
10.1016/j.tsep.2019.03.006
10.1016/j.ces.2012.04.026
10.1007/s00542-019-04364-9
10.1016/j.aej.2021.03.042
10.1080/02286203.2022.2035948
10.1016/j.molliq.2017.02.030
10.1016/j.jmrt.2020.05.085
10.1016/j.energy.2010.12.029
10.1007/BF02478259
10.1007/s00521-019-04221-w
10.1016/j.ijheatmasstransfer.2017.03.037
10.4283/JMAG.2019.24.2.202
10.1016/j.rinp.2017.11.039
10.1016/j.ijheatmasstransfer.2006.02.056
10.1016/j.csite.2021.100869
10.1108/HFF-04-2015-0159
10.37934/araset.29.2.185194
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2024.109828
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
ExternalDocumentID 10_1016_j_engappai_2024_109828
S0952197624019870
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ACDAQ
ACGFS
ACLOT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
~G-
~HD
29G
9DU
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
UHS
WUQ
ZMT
ID FETCH-LOGICAL-c312t-bd19d78387d5d80bf4d144771f03e64185d958b3f5d2d477e474bbb56ff8ef5e3
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001386193200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Sat Nov 29 06:51:41 EST 2025
Tue Nov 18 20:59:35 EST 2025
Wed Dec 10 14:25:29 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Levenberg–marquardt algorithm/scheme
Wedge flow
Chemical reaction
Application of AI
Stability analysis
Mixed convection
Eyring powell fluid
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-bd19d78387d5d80bf4d144771f03e64185d958b3f5d2d477e474bbb56ff8ef5e3
ORCID 0000-0002-2641-1575
0000-0002-0506-7920
ParticipantIDs crossref_primary_10_1016_j_engappai_2024_109828
crossref_citationtrail_10_1016_j_engappai_2024_109828
elsevier_sciencedirect_doi_10_1016_j_engappai_2024_109828
PublicationCentury 2000
PublicationDate 2025-02-01
2025-02-00
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Reddy, Das (bib55) 2016; 19
Anuar, Bachok, Arifin, Rosali (bib3) 2019; 11
Awaludin, Ahmad, Ishak (bib7) 2020; 9
Khan, Zeeshan, Ellahi, Bhatti (bib34) 2024; 12
Zaimi, Ishak, Pop (bib67) 2017; 46
Baazeem, Arif, Abodayeh (bib8) 2023; 11
Dawar, Shah, Tassaddiq, Kumam, Islam, Khan (bib13) 2021; 24
Dufera (bib15) 2021; 5
Pop, Naganthran, Nazar (bib50) 2016; 26
Yih (bib66) 1998; 128
Bush (bib9) 2018
Hussain, Ranjha, Anwar, Jahan, Ali (bib24) 2022; 139
Kamal, Zaimi, Ishak, Pop (bib28) 2019; 48
Kumar, Ramesh, Chandok (bib37) 2020; 65
Malik, Bibi, Khan, Salahuddin (bib42) 2016; 6
Chakraverty, Mall (bib10) 2017
Javed, Farooq, Ahmad, Anjum (bib26) 2019; 24
Zainal, Nazar, Naganthran, Pop (bib68) 2021; 60
Rehman, Chen, Hamid, Guedri (bib59) 2024; 38
Johnson (bib27) 2023; 43
Kumar, Raju, Mahanthesh, Gireesha, Varma (bib36) 2017; 16
Khan, Sultan, Khan (bib31) 2015; 13
Mishra, Hussain, Makinde, Seth (bib46) 2020; 52
Sangeetha, De (bib60) 2023; 52
Kumari, Jain (bib38) 2019; 8
Ray, Vasu, Murthy, Gorla (bib53) 2020; 6
Weidman, Kubitschek, Davis (bib65) 2006; 44
Hussain, Malik, Salahuddin, Bilal, Awais (bib22) 2017; 231
Othman, Yacob, Bachok, Ishak, Pop (bib49) 2017; 115
Alam, Khatun, Rahman, Vajravelu (bib1) 2016; 105
Omar, Osman, Mohamad, Jusoh, Ismail (bib48) 2023; 29
Colorado, Ali, García-Valladares, Hernández (bib11) 2011; 36
Noghrehabadi, Mirzaei, Ghalambaz, Chamkha, Ghanbarzadeh (bib47) 2017; 4
Zeeshan, Khan, Ellahi, Asghar (bib70) 2023; 33
Makinde, Animasaun (bib41) 2016; 109
Awaludin, Weidman, Ishak (bib5) 2016; 6
Gireesha, Gorla, Mahanthesh (bib18) 2015; 4
Rehman, Malik, Malik, Sandeep, Saba (bib56) 2017; 7
McCulloch, Pitts (bib43) 1943; 5
Su, Zheng, Zhang, Zhang (bib62) 2012; 78
Gholinia, Hosseinzadeh, Mehrzadi, Ganji, Ranjbar (bib16) 2019; 13
Reddappa (bib54) 2021; 12
Awaludin, Ishak, Pop (bib6) 2018; 8
Khan, Alzahrani, Hobiny, Ali (bib33) 2020; 9
Prasannakumara, Gireesha, Krishnamurthy, Kumar (bib51) 2017; 9
Dogonchi, Ganji (bib14) 2016; 220
Merrill, Beauchesne, Previte, Paullet, Weidman (bib44) 2006; 49
Hashim, Hamid, Khan (bib19) 2019; 25
Khan, Azam, Alshomrani (bib32) 2017; 110
Khan, Sardar (bib30) 2018; 8
Kudenatti, Jyothi (bib35) 2019; 11
Ur Rehman, Chen, Hamid (bib63) 2023; 148
Zeeshan, Khan, Feroz, Al-Duais, Mahmoud (bib69) 2022; 12
Liu, Zhu, Li, Huang, Bi (bib39) 2023; 47
Ali, Zaib (bib2) 2019; 26
Mishra, Baag, Bhatti (bib45) 2018; 57
Kasmani, Sivasankaran, Bhuvaneswari, Siri (bib29) 2015; 9
Raja, Shoaib, Hussain, Nisar, Islam (bib52) 2022; 130
Rehman, Chen, Khan, Hamid, Masmoudi (bib58) 2024
Das (bib12) 2012; 55
Sedki (bib61) 2023; 7
Rehman, Chen, Hamid, Qi (bib57) 2023; 830
Ghosh, Mukhopadhyay (bib17) 2020; 32
Waini, Ishak, Pop (bib64) 2020; 41
Lund, Omar, Khan, Sherif (bib40) 2020; 12
Arani, Aberoumand (bib4) 2021; 380
Hina, Mustafa, Hayat, Alsaedi (bib21) 2016; 135
Hecht-Nielsen (bib20) 1989
Israr Ur Rehman, Chen, Hamid, Jamshed, Eid, Duraihem, Alqahtani (bib25) 2023
Hussain, Ghaffar, Ali, Shahzad, Nisar, Alharthi, Jamshed (bib23) 2021; 60
Israr Ur Rehman (10.1016/j.engappai.2024.109828_bib25) 2023
Omar (10.1016/j.engappai.2024.109828_bib48) 2023; 29
Chakraverty (10.1016/j.engappai.2024.109828_bib10) 2017
Ghosh (10.1016/j.engappai.2024.109828_bib17) 2020; 32
Khan (10.1016/j.engappai.2024.109828_bib32) 2017; 110
Liu (10.1016/j.engappai.2024.109828_bib39) 2023; 47
Othman (10.1016/j.engappai.2024.109828_bib49) 2017; 115
Gholinia (10.1016/j.engappai.2024.109828_bib16) 2019; 13
Sedki (10.1016/j.engappai.2024.109828_bib61) 2023; 7
Kamal (10.1016/j.engappai.2024.109828_bib28) 2019; 48
Khan (10.1016/j.engappai.2024.109828_bib30) 2018; 8
Merrill (10.1016/j.engappai.2024.109828_bib44) 2006; 49
Johnson (10.1016/j.engappai.2024.109828_bib27) 2023; 43
Su (10.1016/j.engappai.2024.109828_bib62) 2012; 78
Rehman (10.1016/j.engappai.2024.109828_bib56) 2017; 7
Kumar (10.1016/j.engappai.2024.109828_bib37) 2020; 65
Ali (10.1016/j.engappai.2024.109828_bib2) 2019; 26
Khan (10.1016/j.engappai.2024.109828_bib31) 2015; 13
Mishra (10.1016/j.engappai.2024.109828_bib46) 2020; 52
Pop (10.1016/j.engappai.2024.109828_bib50) 2016; 26
Khan (10.1016/j.engappai.2024.109828_bib33) 2020; 9
Kudenatti (10.1016/j.engappai.2024.109828_bib35) 2019; 11
Raja (10.1016/j.engappai.2024.109828_bib52) 2022; 130
Javed (10.1016/j.engappai.2024.109828_bib26) 2019; 24
Gireesha (10.1016/j.engappai.2024.109828_bib18) 2015; 4
Zeeshan (10.1016/j.engappai.2024.109828_bib69) 2022; 12
Hussain (10.1016/j.engappai.2024.109828_bib23) 2021; 60
Reddappa (10.1016/j.engappai.2024.109828_bib54) 2021; 12
Mishra (10.1016/j.engappai.2024.109828_bib45) 2018; 57
Zeeshan (10.1016/j.engappai.2024.109828_bib70) 2023; 33
Prasannakumara (10.1016/j.engappai.2024.109828_bib51) 2017; 9
Ray (10.1016/j.engappai.2024.109828_bib53) 2020; 6
Waini (10.1016/j.engappai.2024.109828_bib64) 2020; 41
Rehman (10.1016/j.engappai.2024.109828_bib59) 2024; 38
Anuar (10.1016/j.engappai.2024.109828_bib3) 2019; 11
Hashim (10.1016/j.engappai.2024.109828_bib19) 2019; 25
Arani (10.1016/j.engappai.2024.109828_bib4) 2021; 380
Rehman (10.1016/j.engappai.2024.109828_bib58) 2024
Awaludin (10.1016/j.engappai.2024.109828_bib5) 2016; 6
Malik (10.1016/j.engappai.2024.109828_bib42) 2016; 6
Reddy (10.1016/j.engappai.2024.109828_bib55) 2016; 19
Zaimi (10.1016/j.engappai.2024.109828_bib67) 2017; 46
Sangeetha (10.1016/j.engappai.2024.109828_bib60) 2023; 52
Dufera (10.1016/j.engappai.2024.109828_bib15) 2021; 5
Dogonchi (10.1016/j.engappai.2024.109828_bib14) 2016; 220
Colorado (10.1016/j.engappai.2024.109828_bib11) 2011; 36
Zainal (10.1016/j.engappai.2024.109828_bib68) 2021; 60
Ur Rehman (10.1016/j.engappai.2024.109828_bib63) 2023; 148
Hussain (10.1016/j.engappai.2024.109828_bib22) 2017; 231
Lund (10.1016/j.engappai.2024.109828_bib40) 2020; 12
Noghrehabadi (10.1016/j.engappai.2024.109828_bib47) 2017; 4
Das (10.1016/j.engappai.2024.109828_bib12) 2012; 55
Yih (10.1016/j.engappai.2024.109828_bib66) 1998; 128
Hecht-Nielsen (10.1016/j.engappai.2024.109828_bib20) 1989
Kasmani (10.1016/j.engappai.2024.109828_bib29) 2015; 9
Alam (10.1016/j.engappai.2024.109828_bib1) 2016; 105
Hina (10.1016/j.engappai.2024.109828_bib21) 2016; 135
Kumar (10.1016/j.engappai.2024.109828_bib36) 2017; 16
Khan (10.1016/j.engappai.2024.109828_bib34) 2024; 12
Rehman (10.1016/j.engappai.2024.109828_bib57) 2023; 830
Kumari (10.1016/j.engappai.2024.109828_bib38) 2019; 8
Awaludin (10.1016/j.engappai.2024.109828_bib6) 2018; 8
McCulloch (10.1016/j.engappai.2024.109828_bib43) 1943; 5
Makinde (10.1016/j.engappai.2024.109828_bib41) 2016; 109
Weidman (10.1016/j.engappai.2024.109828_bib65) 2006; 44
Bush (10.1016/j.engappai.2024.109828_bib9) 2018
Hussain (10.1016/j.engappai.2024.109828_bib24) 2022; 139
Baazeem (10.1016/j.engappai.2024.109828_bib8) 2023; 11
Dawar (10.1016/j.engappai.2024.109828_bib13) 2021; 24
Awaludin (10.1016/j.engappai.2024.109828_bib7) 2020; 9
References_xml – volume: 8
  start-page: 938
  year: 2019
  end-page: 946
  ident: bib38
  article-title: MHD convective boundary layer falkner-skan flow for powell-eyring fluid over a permeable moving wedge with heat source
  publication-title: J. Nanofluids
– volume: 115
  start-page: 1412
  year: 2017
  end-page: 1417
  ident: bib49
  article-title: Mixed convection boundary-layer stagnation point flow past a vertical stretching/shrinking surface in a nanofluid
  publication-title: Appl. Therm. Eng.
– volume: 65
  start-page: 187
  year: 2020
  end-page: 197
  ident: bib37
  article-title: Mathematical modeling and simulation for the flow of magneto-Powell-Eyring fluid in an annulus with concentric rotating cylinders
  publication-title: Chin. J. Phys.
– volume: 8
  start-page: 1
  year: 2018
  end-page: 8
  ident: bib6
  article-title: ‘‘On the stability of MHD boundary layer flow over a stretching/shrinking wedge,’’
  publication-title: Sci. Rep.
– volume: 57
  start-page: 2435
  year: 2018
  end-page: 2443
  ident: bib45
  article-title: Study of heat and mass transfer on MHD Walters B′ nanofluid flow induced by a stretching porous surface
  publication-title: Alex. Eng. J.
– start-page: 445
  year: 1989
  end-page: 453
  ident: bib20
  article-title: Neurocomputer applications
  publication-title: Neural Computers
– volume: 25
  start-page: 3287
  year: 2019
  end-page: 3297
  ident: bib19
  article-title: Transient flow and heat transfer mechanism for Williamson-nanomaterials caused by a stretching cylinder with variable thermal conductivity
  publication-title: Microsyst. Technol.
– volume: 26
  start-page: 215
  year: 2019
  end-page: 224
  ident: bib2
  article-title: ‘‘Unsteady flow of an Eyring-Powell nanofluid near stagnation point past a convectively heated stretching sheet,’’
  publication-title: Arab J. Basic Appl. Sci.
– volume: 231
  start-page: 341
  year: 2017
  end-page: 352
  ident: bib22
  article-title: Combined effects of viscous dissipation and Joule heating on MHD Sisko nanofluid over a stretching cylinder
  publication-title: J. Mol. Liq.
– volume: 12
  year: 2022
  ident: bib69
  article-title: Visualization of non-Newtonian convective fluid flow with internal heat transfer across a rotating stretchable surface impact of chemical reaction
  publication-title: Sci. Rep.
– volume: 6
  year: 2016
  ident: bib42
  article-title: Numerical solution of Williamson fluid flow past a stretching cylinder and heat transfer with variable thermal conductivity and heat generation/absorption
  publication-title: AIP Adv.
– volume: 11
  start-page: 21
  year: 2019
  end-page: 33
  ident: bib3
  article-title: Effect of suction/injection on stagnation point flow of hybrid nanofluid over an exponentially shrinking sheet with stability analysis
  publication-title: CFD Lett.
– volume: 7
  year: 2023
  ident: bib61
  article-title: Computational analysis of MHD Cross nanofluid containing gyrotactic microorganisms over a permeable horizontal cylinder through a porous medium in presence of thermal radiation and chemical reaction
  publication-title: Part. Differ. Equ. Appl. Math.
– volume: 5
  year: 2021
  ident: bib15
  article-title: ‘‘Deep neural network for system of ordinary differential equations: vectorized algorithm and simulation,’’
  publication-title: Mach. Learn. Appl.
– volume: 12
  start-page: 730
  year: 2021
  end-page: 739
  ident: bib54
  article-title: Analysis of the boundary layer flow of thermally conducting Jeffrey fluid over a stratified exponentially stretching sheet
  publication-title: Turkish J. Comput. Math. Educ. (TURCOMAT)
– volume: 5
  start-page: 115
  year: 1943
  end-page: 133
  ident: bib43
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull. Math. Biophys.
– volume: 49
  start-page: 4681
  year: 2006
  end-page: 4686
  ident: bib44
  article-title: Final steady flow near a stagnation point on a vertical surface in a porous medium
  publication-title: Int. J. Heat Mass Tran.
– volume: 60
  start-page: 915
  year: 2021
  end-page: 926
  ident: bib68
  article-title: ‘‘Stability analysis of MHD hybrid nanofluid flow over a stretching/shrinking sheet with quadratic velocity,’’
  publication-title: Alex. Eng. J.
– volume: 135
  start-page: 89
  year: 2016
  end-page: 100
  ident: bib21
  article-title: Peristaltic flow of Powell-Eyring fluid in curved channel with heat transfer: a useful application in biomedicine
  publication-title: Comput. Methods Progr. Biomed.
– volume: 9
  start-page: 181
  year: 2020
  end-page: 187
  ident: bib7
  article-title: On the stability of the flow over a shrinking cylinder with prescribed surface heat flux
  publication-title: Propul. Power Res.
– volume: 29
  start-page: 185
  year: 2023
  end-page: 194
  ident: bib48
  article-title: Analytical solution of unsteady MHD Casson fluid with thermal radiation and chemical reaction in porous medium
  publication-title: J. Adv. Res. Appl. Sci. Eng. Technol.
– volume: 16
  year: 2017
  ident: bib36
  article-title: Chemical reaction effects on Nano Carreau liquid flow past a cone and a wedge with Cattaneo-Christov heat flux model
  publication-title: Int. J. Chem. React. Eng.
– year: 2024
  ident: bib58
  article-title: Modeling and predicting heat transfer performance in bioconvection flow around a circular cylinder using an artificial neural network approach
  publication-title: Tribol. Int.
– volume: 9
  start-page: 9951
  year: 2020
  end-page: 9964
  ident: bib33
  article-title: Estimation of entropy generation in Carreau-Yasuda fluid flow using chemical reaction with activation energy
  publication-title: J. Mater. Res. Technol.
– volume: 9
  start-page: 123
  year: 2017
  end-page: 132
  ident: bib51
  article-title: MHD flow and nonlinear radiative heat transfer of Sisko nanofluid over a nonlinear stretching sheet
  publication-title: Inform. Med. Unlocked
– volume: 32
  start-page: 7201
  year: 2020
  end-page: 7211
  ident: bib17
  article-title: Stability analysis for model-based study of nanofluid flow over an exponentially shrinking permeable sheet in presence of slip
  publication-title: Neural Comput. Appl.
– volume: 13
  start-page: 37
  year: 2015
  end-page: 49
  ident: bib31
  article-title: Heat and mass transfer of thermophoretic MHD flow of Powell–Eyring fluid over a vertical stretching sheet in the presence of chemical reaction and Joule heating
  publication-title: Int. J. Chem. React. Eng.
– volume: 11
  start-page: 2736
  year: 2023
  ident: bib8
  article-title: ‘‘An efficient and accurate approach to electrical boundary layer nanofluid flow simulation: a use of artificial intelligence,’’
  publication-title: Processes
– volume: 830
  year: 2023
  ident: bib57
  article-title: Numerical analysis of unsteady non-linear mixed convection flow of reiner-philippoff nanofluid along Falkner-Skan wedge with new mass flux condition
  publication-title: Chem. Phys. Lett.
– year: 2017
  ident: bib10
  article-title: ‘‘Artificial Neural Networks for Engineers and Scientists: Solving Ordinary Differential Equations,’’
– volume: 36
  start-page: 854
  year: 2011
  end-page: 863
  ident: bib11
  article-title: ‘‘Heat transfer using a correlation by neural network for natural convection from vertical helical coil in oil and glycerol/water solution,’’
  publication-title: Energy
– volume: 109
  start-page: 159
  year: 2016
  end-page: 171
  ident: bib41
  article-title: Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution
  publication-title: Int. J. Therm. Sci.
– volume: 7
  start-page: 2997
  year: 2017
  end-page: 3006
  ident: bib56
  article-title: Numerical study of double stratification in Casson fluid flow in the presence of mixed convection and chemical reaction
  publication-title: Results Phys.
– volume: 38
  year: 2024
  ident: bib59
  article-title: Analysis of Cattaneo–Christov heat flux and thermal radiation on Darcy–Forchheimer flow of Reiner–Philippoff fluid
  publication-title: Int. J. Mod. Phys. B
– volume: 52
  start-page: 259
  year: 2020
  end-page: 271
  ident: bib46
  article-title: ‘‘Stability analysis and multiple solutions of a hydromagnetic dissipative flow over a stretching/shrinking sheet,’’ Bulgarian
  publication-title: Chem. Commun.
– volume: 6
  start-page: 1
  year: 2020
  end-page: 22
  ident: bib53
  article-title: Non-similar solution of Eyring–Powell fluid flow and heat transfer with convective boundary condition: homotopy Analysis Method
  publication-title: Int. J. Algorithm. Comput. Math.
– volume: 130
  year: 2022
  ident: bib52
  article-title: ‘‘Computational intelligence of Levenberg-Marquardt backpropagation neural networks to study thermal radiation and Hall effects on boundary layer flow past a stretching sheet
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 12
  start-page: 1420
  year: 2024
  ident: bib34
  article-title: Advanced computational framework to analyze the stability of non-Newtonian fluid flow through a wedge with non-linear thermal radiation and chemical reactions
  publication-title: Mathematics
– volume: 12
  start-page: 276
  year: 2020
  ident: bib40
  article-title: ‘‘Dual solutions and stability analysis of a hybrid nanofluid over a stretching/shrinking sheet executing MHD flow,’’
  publication-title: Symmetry
– volume: 26
  start-page: 1747
  year: 2016
  end-page: 1767
  ident: bib50
  article-title: Numerical solutions of non-alignment stagnation-point flow and heat transfer over a stretching/shrinking surface in a nanofluid
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
– volume: 4
  start-page: 474
  year: 2015
  end-page: 484
  ident: bib18
  article-title: Effect of suspended nanoparticles on three-dimensional MHD flow, heat and mass transfer of radiating Eyring-Powell fluid over a stretching sheet
  publication-title: J. Nanofluids
– volume: 139
  year: 2022
  ident: bib24
  article-title: ‘‘Eyring-Powell model flow near a convectively heated porous wedge with chemical reaction effects,’’
  publication-title: J. Taiwan Inst. Chem. Eng.
– year: 2023
  ident: bib25
  article-title: Thermal analysis of radiative and electromagnetic flowing of hybridity nanofluid via Darcy–Forchheimer porous material with slippage constraints
  publication-title: Energy Environ.
– volume: 52
  start-page: 1529
  year: 2023
  end-page: 1551
  ident: bib60
  article-title: Bioconvective Casson nanofluid flow toward stagnation point in non‐Darcy porous medium with buoyancy effects, chemical reaction, and thermal radiation
  publication-title: Heat Transfer
– volume: 4
  start-page: 150
  year: 2017
  end-page: 159
  ident: bib47
  article-title: Boundary layer flow heat and mass transfer study of Sakiadis flow of viscoelastic nanofluids using hybrid neural network-particle swarm optimization (HNNPSO)
  publication-title: Therm. Sci. Eng. Prog.
– volume: 148
  start-page: 13883
  year: 2023
  end-page: 13894
  ident: bib63
  article-title: Multi-physics modeling of magnetohydrodynamic Carreau fluid flow with thermal radiation and Darcy–Forchheimer effects: a study on Soret and Dufour phenomena
  publication-title: J. Therm. Anal. Calorim.
– volume: 9
  start-page: 379
  year: 2015
  end-page: 388
  ident: bib29
  article-title: ‘‘Effect of chemical reaction on convective heat transfer of boundary layer flow in nanofluid over a wedge with heat generation/absorption and suction,’’
  publication-title: J. Appl. Fluid Mech.
– volume: 78
  start-page: 1
  year: 2012
  end-page: 8
  ident: bib62
  article-title: MHD mixed convective heat transfer over a permeable stretching wedge with thermal radiation and ohmic heating
  publication-title: Chem. Eng. Sci.
– volume: 110
  start-page: 437
  year: 2017
  end-page: 446
  ident: bib32
  article-title: Effects of melting and heat generation/absorption on unsteady Falkner-Skan flow of Carreau nanofluid over a wedge
  publication-title: Int. J. Heat Mass Tran.
– volume: 41
  start-page: 507
  year: 2020
  end-page: 520
  ident: bib64
  article-title: ‘‘MHD flow and heat transfer of a hybrid nanofluid past a permeable stretching/shrinking wedge,’’
  publication-title: Appl. Math. Mech.
– volume: 24
  start-page: 202
  year: 2019
  end-page: 211
  ident: bib26
  article-title: Melting heat transfer in thermally stratified magnetohydrodynamic flow of eyring-powell fluid with homogeneous-heterogeneous reaction
  publication-title: J. Magn.
– volume: 47
  year: 2023
  ident: bib39
  article-title: ‘‘Computational simulation of mass transfer in membranes using hybrid machine learning models and computational fluid dynamics,’’
  publication-title: Case Stud. Therm. Eng.
– volume: 60
  start-page: 5473
  year: 2021
  end-page: 5483
  ident: bib23
  article-title: MHD thermal boundary layer flow of a Casson fluid over a penetrable stretching wedge in the existence of nonlinear radiation and convective boundary condition
  publication-title: Alex. Eng. J.
– volume: 43
  start-page: 87
  year: 2023
  end-page: 100
  ident: bib27
  article-title: Impact of radiation and heat generation/absorption in a Walters' B fluid through a porous medium with thermal and thermo diffusion in the presence of chemical reaction
  publication-title: Int. J. Model. Simulat.
– volume: 24
  year: 2021
  ident: bib13
  article-title: A convective flow of Williamson nanofluid through cone and wedge with non-isothermal and non-isosolutal conditions: a revised Buongiorno model
  publication-title: Case Stud. Therm. Eng.
– volume: 33
  start-page: 3492
  year: 2023
  end-page: 3518
  ident: bib70
  article-title: ‘‘Artificial neural network simulation and sensitivity analysis for optimal thermal transport of magnetic viscous fluid over shrinking wedge via RSM,’’
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
– volume: 6
  year: 2016
  ident: bib5
  article-title: Stability analysis of stagnation-point flow over a stretching/shrinking sheet
  publication-title: AIP Adv.
– volume: 55
  start-page: 7166
  year: 2012
  end-page: 7174
  ident: bib12
  article-title: Influence of thermophoresis and chemical reaction on MHD micropolar fluid flow with variable fluid properties
  publication-title: Int. J. Heat Mass Tran.
– volume: 48
  start-page: 243
  year: 2019
  end-page: 250
  ident: bib28
  article-title: ‘‘Stability analysis of MHD stagnation-point flow towards a permeable stretching/shrinking sheet in a nanofluid with chemical reactions effect,’’
  publication-title: Sains Malays.
– volume: 105
  start-page: 191
  year: 2016
  end-page: 205
  ident: bib1
  article-title: Effects of variable fluid properties and thermophoresis on unsteady forced convective boundary layer flow along a permeable stretching/shrinking wedge with variable Prandtl and Schmidt numbers
  publication-title: Int. J. Mech. Sci.
– volume: 44
  start-page: 730
  year: 2006
  end-page: 737
  ident: bib65
  article-title: The effect of transpiration on self-similar boundary layer flow over moving surfaces
  publication-title: Int. J. Eng. Sci.
– volume: 46
  start-page: 1667
  year: 2017
  end-page: 1674
  ident: bib67
  article-title: Unsteady flow of a nanofluid past a permeable shrinking cylinder using Buongiorno's model
  publication-title: Sains Malays.
– volume: 13
  year: 2019
  ident: bib16
  article-title: Investigation of MHD Eyring–Powell fluid flow over a rotating disk under effect of homogeneous–heterogeneous reactions
  publication-title: Case Stud. Therm. Eng.
– volume: 11
  start-page: 66
  year: 2019
  end-page: 73
  ident: bib35
  article-title: Two-dimensional boundary-layer flow and heat transfer over a wedge: numerical and asymptotic solutions
  publication-title: Therm. Sci. Eng. Prog.
– volume: 8
  start-page: 516
  year: 2018
  end-page: 523
  ident: bib30
  article-title: On steady two-dimensional Carreau fluid flow over a wedge in the presence of infinite shear rate viscosity
  publication-title: Results Phys.
– year: 2018
  ident: bib9
  article-title: ‘‘Perturbation Methods for Engineers and Scientists,’’
– volume: 380
  start-page: 152
  year: 2021
  end-page: 163
  ident: bib4
  article-title: ‘‘Stagnation-point flow of Ag-CuO/water hybrid nanofluids over a permeable stretching/shrinking sheet with temporal stability analysis,’’
  publication-title: Powder Technol.
– volume: 128
  start-page: 173
  year: 1998
  end-page: 181
  ident: bib66
  article-title: Uniform suction/blowing effect on forced convection about a wedge: uniform heat flux
  publication-title: Acta Mech.
– volume: 220
  start-page: 592
  year: 2016
  end-page: 603
  ident: bib14
  article-title: ‘‘Investigation of MHD nano fluid flow and heat transfer in a stretching/shrinking convergent/divergent channel considering thermal radiation
  publication-title: J. Mol. Liq.
– volume: 19
  start-page: 1108
  year: 2016
  end-page: 1116
  ident: bib55
  article-title: ‘‘Estimation of MHD boundary layer slip flow over a permeable stretching cylinder in the presence of chemical reaction through numerical and artificial neural network modeling,’’
  publication-title: Eng. Sci. Technol. Int. J.
– volume: 48
  start-page: 243
  issue: 1
  year: 2019
  ident: 10.1016/j.engappai.2024.109828_bib28
  article-title: ‘‘Stability analysis of MHD stagnation-point flow towards a permeable stretching/shrinking sheet in a nanofluid with chemical reactions effect,’’
  publication-title: Sains Malays.
  doi: 10.17576/jsm-2019-4801-28
– volume: 12
  start-page: 276
  issue: 2
  year: 2020
  ident: 10.1016/j.engappai.2024.109828_bib40
  article-title: ‘‘Dual solutions and stability analysis of a hybrid nanofluid over a stretching/shrinking sheet executing MHD flow,’’
  publication-title: Symmetry
  doi: 10.3390/sym12020276
– volume: 12
  issue: 1
  year: 2022
  ident: 10.1016/j.engappai.2024.109828_bib69
  article-title: Visualization of non-Newtonian convective fluid flow with internal heat transfer across a rotating stretchable surface impact of chemical reaction
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-14384-7
– volume: 6
  start-page: 1
  year: 2020
  ident: 10.1016/j.engappai.2024.109828_bib53
  article-title: Non-similar solution of Eyring–Powell fluid flow and heat transfer with convective boundary condition: homotopy Analysis Method
  publication-title: Int. J. Algorithm. Comput. Math.
– volume: 105
  start-page: 191
  year: 2016
  ident: 10.1016/j.engappai.2024.109828_bib1
  article-title: Effects of variable fluid properties and thermophoresis on unsteady forced convective boundary layer flow along a permeable stretching/shrinking wedge with variable Prandtl and Schmidt numbers
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2015.11.018
– volume: 13
  year: 2019
  ident: 10.1016/j.engappai.2024.109828_bib16
  article-title: Investigation of MHD Eyring–Powell fluid flow over a rotating disk under effect of homogeneous–heterogeneous reactions
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2018.11.007
– volume: 65
  start-page: 187
  year: 2020
  ident: 10.1016/j.engappai.2024.109828_bib37
  article-title: Mathematical modeling and simulation for the flow of magneto-Powell-Eyring fluid in an annulus with concentric rotating cylinders
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2020.02.002
– volume: 9
  start-page: 181
  issue: 2
  year: 2020
  ident: 10.1016/j.engappai.2024.109828_bib7
  article-title: On the stability of the flow over a shrinking cylinder with prescribed surface heat flux
  publication-title: Propul. Power Res.
  doi: 10.1016/j.jppr.2020.03.001
– volume: 12
  start-page: 1420
  issue: 10
  year: 2024
  ident: 10.1016/j.engappai.2024.109828_bib34
  article-title: Advanced computational framework to analyze the stability of non-Newtonian fluid flow through a wedge with non-linear thermal radiation and chemical reactions
  publication-title: Mathematics
  doi: 10.3390/math12101420
– volume: 8
  start-page: 938
  issue: 5
  year: 2019
  ident: 10.1016/j.engappai.2024.109828_bib38
  article-title: MHD convective boundary layer falkner-skan flow for powell-eyring fluid over a permeable moving wedge with heat source
  publication-title: J. Nanofluids
  doi: 10.1166/jon.2019.1660
– volume: 60
  start-page: 915
  issue: 1
  year: 2021
  ident: 10.1016/j.engappai.2024.109828_bib68
  article-title: ‘‘Stability analysis of MHD hybrid nanofluid flow over a stretching/shrinking sheet with quadratic velocity,’’
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2020.10.020
– volume: 109
  start-page: 159
  year: 2016
  ident: 10.1016/j.engappai.2024.109828_bib41
  article-title: Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2016.06.003
– volume: 7
  start-page: 2997
  year: 2017
  ident: 10.1016/j.engappai.2024.109828_bib56
  article-title: Numerical study of double stratification in Casson fluid flow in the presence of mixed convection and chemical reaction
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2017.08.020
– volume: 6
  issue: 4
  year: 2016
  ident: 10.1016/j.engappai.2024.109828_bib5
  article-title: Stability analysis of stagnation-point flow over a stretching/shrinking sheet
  publication-title: AIP Adv.
  doi: 10.1063/1.4947130
– volume: 55
  start-page: 7166
  issue: 23–24
  year: 2012
  ident: 10.1016/j.engappai.2024.109828_bib12
  article-title: Influence of thermophoresis and chemical reaction on MHD micropolar fluid flow with variable fluid properties
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2012.07.033
– volume: 47
  year: 2023
  ident: 10.1016/j.engappai.2024.109828_bib39
  article-title: ‘‘Computational simulation of mass transfer in membranes using hybrid machine learning models and computational fluid dynamics,’’
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2023.103086
– volume: 130
  year: 2022
  ident: 10.1016/j.engappai.2024.109828_bib52
  article-title: ‘‘Computational intelligence of Levenberg-Marquardt backpropagation neural networks to study thermal radiation and Hall effects on boundary layer flow past a stretching sheet
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2021.105799
– volume: 44
  start-page: 730
  issue: 11–12
  year: 2006
  ident: 10.1016/j.engappai.2024.109828_bib65
  article-title: The effect of transpiration on self-similar boundary layer flow over moving surfaces
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2006.04.005
– volume: 46
  start-page: 1667
  issue: 9
  year: 2017
  ident: 10.1016/j.engappai.2024.109828_bib67
  article-title: Unsteady flow of a nanofluid past a permeable shrinking cylinder using Buongiorno's model
  publication-title: Sains Malays.
  doi: 10.17576/jsm-2017-4609-40
– volume: 4
  start-page: 150
  year: 2017
  ident: 10.1016/j.engappai.2024.109828_bib47
  article-title: Boundary layer flow heat and mass transfer study of Sakiadis flow of viscoelastic nanofluids using hybrid neural network-particle swarm optimization (HNNPSO)
  publication-title: Therm. Sci. Eng. Prog.
  doi: 10.1016/j.tsep.2017.09.003
– volume: 12
  start-page: 730
  issue: 13
  year: 2021
  ident: 10.1016/j.engappai.2024.109828_bib54
  article-title: Analysis of the boundary layer flow of thermally conducting Jeffrey fluid over a stratified exponentially stretching sheet
  publication-title: Turkish J. Comput. Math. Educ. (TURCOMAT)
– volume: 148
  start-page: 13883
  issue: 24
  year: 2023
  ident: 10.1016/j.engappai.2024.109828_bib63
  article-title: Multi-physics modeling of magnetohydrodynamic Carreau fluid flow with thermal radiation and Darcy–Forchheimer effects: a study on Soret and Dufour phenomena
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-023-12699-9
– volume: 19
  start-page: 1108
  issue: 3
  year: 2016
  ident: 10.1016/j.engappai.2024.109828_bib55
  article-title: ‘‘Estimation of MHD boundary layer slip flow over a permeable stretching cylinder in the presence of chemical reaction through numerical and artificial neural network modeling,’’
  publication-title: Eng. Sci. Technol. Int. J.
– volume: 11
  start-page: 2736
  issue: 9
  year: 2023
  ident: 10.1016/j.engappai.2024.109828_bib8
  article-title: ‘‘An efficient and accurate approach to electrical boundary layer nanofluid flow simulation: a use of artificial intelligence,’’
  publication-title: Processes
  doi: 10.3390/pr11092736
– volume: 4
  start-page: 474
  issue: 4
  year: 2015
  ident: 10.1016/j.engappai.2024.109828_bib18
  article-title: Effect of suspended nanoparticles on three-dimensional MHD flow, heat and mass transfer of radiating Eyring-Powell fluid over a stretching sheet
  publication-title: J. Nanofluids
  doi: 10.1166/jon.2015.1177
– volume: 128
  start-page: 173
  issue: 3
  year: 1998
  ident: 10.1016/j.engappai.2024.109828_bib66
  article-title: Uniform suction/blowing effect on forced convection about a wedge: uniform heat flux
  publication-title: Acta Mech.
  doi: 10.1007/BF01251888
– volume: 220
  start-page: 592
  year: 2016
  ident: 10.1016/j.engappai.2024.109828_bib14
  article-title: ‘‘Investigation of MHD nano fluid flow and heat transfer in a stretching/shrinking convergent/divergent channel considering thermal radiation
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.05.022
– volume: 139
  year: 2022
  ident: 10.1016/j.engappai.2024.109828_bib24
  article-title: ‘‘Eyring-Powell model flow near a convectively heated porous wedge with chemical reaction effects,’’
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2022.104510
– year: 2023
  ident: 10.1016/j.engappai.2024.109828_bib25
  article-title: Thermal analysis of radiative and electromagnetic flowing of hybridity nanofluid via Darcy–Forchheimer porous material with slippage constraints
  publication-title: Energy Environ.
– volume: 52
  start-page: 259
  issue: 2
  year: 2020
  ident: 10.1016/j.engappai.2024.109828_bib46
  article-title: ‘‘Stability analysis and multiple solutions of a hydromagnetic dissipative flow over a stretching/shrinking sheet,’’ Bulgarian
  publication-title: Chem. Commun.
– year: 2017
  ident: 10.1016/j.engappai.2024.109828_bib10
– volume: 830
  year: 2023
  ident: 10.1016/j.engappai.2024.109828_bib57
  article-title: Numerical analysis of unsteady non-linear mixed convection flow of reiner-philippoff nanofluid along Falkner-Skan wedge with new mass flux condition
  publication-title: Chem. Phys. Lett.
– volume: 6
  issue: 3
  year: 2016
  ident: 10.1016/j.engappai.2024.109828_bib42
  article-title: Numerical solution of Williamson fluid flow past a stretching cylinder and heat transfer with variable thermal conductivity and heat generation/absorption
  publication-title: AIP Adv.
  doi: 10.1063/1.4943398
– start-page: 445
  year: 1989
  ident: 10.1016/j.engappai.2024.109828_bib20
  article-title: Neurocomputer applications
– year: 2024
  ident: 10.1016/j.engappai.2024.109828_bib58
  article-title: Modeling and predicting heat transfer performance in bioconvection flow around a circular cylinder using an artificial neural network approach
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2024.110182
– volume: 9
  start-page: 379
  issue: 1
  year: 2015
  ident: 10.1016/j.engappai.2024.109828_bib29
  article-title: ‘‘Effect of chemical reaction on convective heat transfer of boundary layer flow in nanofluid over a wedge with heat generation/absorption and suction,’’
  publication-title: J. Appl. Fluid Mech.
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.engappai.2024.109828_bib6
  article-title: ‘‘On the stability of MHD boundary layer flow over a stretching/shrinking wedge,’’
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-31777-9
– volume: 57
  start-page: 2435
  issue: 4
  year: 2018
  ident: 10.1016/j.engappai.2024.109828_bib45
  article-title: Study of heat and mass transfer on MHD Walters B′ nanofluid flow induced by a stretching porous surface
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2017.08.007
– volume: 33
  start-page: 3492
  issue: 10
  year: 2023
  ident: 10.1016/j.engappai.2024.109828_bib70
  article-title: ‘‘Artificial neural network simulation and sensitivity analysis for optimal thermal transport of magnetic viscous fluid over shrinking wedge via RSM,’’
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/HFF-03-2023-0135
– volume: 115
  start-page: 1412
  year: 2017
  ident: 10.1016/j.engappai.2024.109828_bib49
  article-title: Mixed convection boundary-layer stagnation point flow past a vertical stretching/shrinking surface in a nanofluid
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.10.159
– volume: 41
  start-page: 507
  issue: 3
  year: 2020
  ident: 10.1016/j.engappai.2024.109828_bib64
  article-title: ‘‘MHD flow and heat transfer of a hybrid nanofluid past a permeable stretching/shrinking wedge,’’
  publication-title: Appl. Math. Mech.
  doi: 10.1007/s10483-020-2584-7
– volume: 135
  start-page: 89
  year: 2016
  ident: 10.1016/j.engappai.2024.109828_bib21
  article-title: Peristaltic flow of Powell-Eyring fluid in curved channel with heat transfer: a useful application in biomedicine
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2016.07.019
– volume: 38
  issue: 3
  year: 2024
  ident: 10.1016/j.engappai.2024.109828_bib59
  article-title: Analysis of Cattaneo–Christov heat flux and thermal radiation on Darcy–Forchheimer flow of Reiner–Philippoff fluid
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979224500462
– volume: 5
  year: 2021
  ident: 10.1016/j.engappai.2024.109828_bib15
  article-title: ‘‘Deep neural network for system of ordinary differential equations: vectorized algorithm and simulation,’’
  publication-title: Mach. Learn. Appl.
– volume: 9
  start-page: 123
  year: 2017
  ident: 10.1016/j.engappai.2024.109828_bib51
  article-title: MHD flow and nonlinear radiative heat transfer of Sisko nanofluid over a nonlinear stretching sheet
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2017.07.006
– volume: 52
  start-page: 1529
  issue: 2
  year: 2023
  ident: 10.1016/j.engappai.2024.109828_bib60
  article-title: Bioconvective Casson nanofluid flow toward stagnation point in non‐Darcy porous medium with buoyancy effects, chemical reaction, and thermal radiation
  publication-title: Heat Transfer
  doi: 10.1002/htj.22753
– volume: 13
  start-page: 37
  issue: 1
  year: 2015
  ident: 10.1016/j.engappai.2024.109828_bib31
  article-title: Heat and mass transfer of thermophoretic MHD flow of Powell–Eyring fluid over a vertical stretching sheet in the presence of chemical reaction and Joule heating
  publication-title: Int. J. Chem. React. Eng.
  doi: 10.1515/ijcre-2014-0090
– year: 2018
  ident: 10.1016/j.engappai.2024.109828_bib9
– volume: 7
  year: 2023
  ident: 10.1016/j.engappai.2024.109828_bib61
  article-title: Computational analysis of MHD Cross nanofluid containing gyrotactic microorganisms over a permeable horizontal cylinder through a porous medium in presence of thermal radiation and chemical reaction
  publication-title: Part. Differ. Equ. Appl. Math.
– volume: 380
  start-page: 152
  year: 2021
  ident: 10.1016/j.engappai.2024.109828_bib4
  article-title: ‘‘Stagnation-point flow of Ag-CuO/water hybrid nanofluids over a permeable stretching/shrinking sheet with temporal stability analysis,’’
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2020.11.043
– volume: 11
  start-page: 66
  year: 2019
  ident: 10.1016/j.engappai.2024.109828_bib35
  article-title: Two-dimensional boundary-layer flow and heat transfer over a wedge: numerical and asymptotic solutions
  publication-title: Therm. Sci. Eng. Prog.
  doi: 10.1016/j.tsep.2019.03.006
– volume: 78
  start-page: 1
  year: 2012
  ident: 10.1016/j.engappai.2024.109828_bib62
  article-title: MHD mixed convective heat transfer over a permeable stretching wedge with thermal radiation and ohmic heating
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2012.04.026
– volume: 25
  start-page: 3287
  year: 2019
  ident: 10.1016/j.engappai.2024.109828_bib19
  article-title: Transient flow and heat transfer mechanism for Williamson-nanomaterials caused by a stretching cylinder with variable thermal conductivity
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-019-04364-9
– volume: 60
  start-page: 5473
  issue: 6
  year: 2021
  ident: 10.1016/j.engappai.2024.109828_bib23
  article-title: MHD thermal boundary layer flow of a Casson fluid over a penetrable stretching wedge in the existence of nonlinear radiation and convective boundary condition
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2021.03.042
– volume: 43
  start-page: 87
  issue: 2
  year: 2023
  ident: 10.1016/j.engappai.2024.109828_bib27
  article-title: Impact of radiation and heat generation/absorption in a Walters' B fluid through a porous medium with thermal and thermo diffusion in the presence of chemical reaction
  publication-title: Int. J. Model. Simulat.
  doi: 10.1080/02286203.2022.2035948
– volume: 231
  start-page: 341
  year: 2017
  ident: 10.1016/j.engappai.2024.109828_bib22
  article-title: Combined effects of viscous dissipation and Joule heating on MHD Sisko nanofluid over a stretching cylinder
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2017.02.030
– volume: 9
  start-page: 9951
  issue: 5
  year: 2020
  ident: 10.1016/j.engappai.2024.109828_bib33
  article-title: Estimation of entropy generation in Carreau-Yasuda fluid flow using chemical reaction with activation energy
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2020.05.085
– volume: 16
  issue: 4
  year: 2017
  ident: 10.1016/j.engappai.2024.109828_bib36
  article-title: Chemical reaction effects on Nano Carreau liquid flow past a cone and a wedge with Cattaneo-Christov heat flux model
  publication-title: Int. J. Chem. React. Eng.
– volume: 36
  start-page: 854
  issue: 2
  year: 2011
  ident: 10.1016/j.engappai.2024.109828_bib11
  article-title: ‘‘Heat transfer using a correlation by neural network for natural convection from vertical helical coil in oil and glycerol/water solution,’’
  publication-title: Energy
  doi: 10.1016/j.energy.2010.12.029
– volume: 11
  start-page: 21
  issue: 12
  year: 2019
  ident: 10.1016/j.engappai.2024.109828_bib3
  article-title: Effect of suction/injection on stagnation point flow of hybrid nanofluid over an exponentially shrinking sheet with stability analysis
  publication-title: CFD Lett.
– volume: 26
  start-page: 215
  issue: 1
  year: 2019
  ident: 10.1016/j.engappai.2024.109828_bib2
  article-title: ‘‘Unsteady flow of an Eyring-Powell nanofluid near stagnation point past a convectively heated stretching sheet,’’
  publication-title: Arab J. Basic Appl. Sci.
– volume: 5
  start-page: 115
  year: 1943
  ident: 10.1016/j.engappai.2024.109828_bib43
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull. Math. Biophys.
  doi: 10.1007/BF02478259
– volume: 32
  start-page: 7201
  issue: 11
  year: 2020
  ident: 10.1016/j.engappai.2024.109828_bib17
  article-title: Stability analysis for model-based study of nanofluid flow over an exponentially shrinking permeable sheet in presence of slip
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04221-w
– volume: 110
  start-page: 437
  year: 2017
  ident: 10.1016/j.engappai.2024.109828_bib32
  article-title: Effects of melting and heat generation/absorption on unsteady Falkner-Skan flow of Carreau nanofluid over a wedge
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2017.03.037
– volume: 24
  start-page: 202
  issue: 2
  year: 2019
  ident: 10.1016/j.engappai.2024.109828_bib26
  article-title: Melting heat transfer in thermally stratified magnetohydrodynamic flow of eyring-powell fluid with homogeneous-heterogeneous reaction
  publication-title: J. Magn.
  doi: 10.4283/JMAG.2019.24.2.202
– volume: 8
  start-page: 516
  year: 2018
  ident: 10.1016/j.engappai.2024.109828_bib30
  article-title: On steady two-dimensional Carreau fluid flow over a wedge in the presence of infinite shear rate viscosity
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2017.11.039
– volume: 49
  start-page: 4681
  issue: 23–24
  year: 2006
  ident: 10.1016/j.engappai.2024.109828_bib44
  article-title: Final steady flow near a stagnation point on a vertical surface in a porous medium
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2006.02.056
– volume: 24
  year: 2021
  ident: 10.1016/j.engappai.2024.109828_bib13
  article-title: A convective flow of Williamson nanofluid through cone and wedge with non-isothermal and non-isosolutal conditions: a revised Buongiorno model
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2021.100869
– volume: 26
  start-page: 1747
  issue: 6
  year: 2016
  ident: 10.1016/j.engappai.2024.109828_bib50
  article-title: Numerical solutions of non-alignment stagnation-point flow and heat transfer over a stretching/shrinking surface in a nanofluid
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/HFF-04-2015-0159
– volume: 29
  start-page: 185
  issue: 2
  year: 2023
  ident: 10.1016/j.engappai.2024.109828_bib48
  article-title: Analytical solution of unsteady MHD Casson fluid with thermal radiation and chemical reaction in porous medium
  publication-title: J. Adv. Res. Appl. Sci. Eng. Technol.
  doi: 10.37934/araset.29.2.185194
SSID ssj0003846
Score 2.4799159
Snippet In this paper, author presents an innovative artificial intelligence techniques based on deep learning simulation algorithms due to wide range of applications...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109828
SubjectTerms Application of AI
Chemical reaction
Eyring powell fluid
Levenberg–marquardt algorithm/scheme
Mixed convection
Stability analysis
Wedge flow
Title Temporal stability and non-unique solution of reacting Eyring Powell flows over shrinking wedges using neural networks
URI https://dx.doi.org/10.1016/j.engappai.2024.109828
Volume 141
WOSCitedRecordID wos001386193200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0003846
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKxwMvbHxpY2zyA29VQvPh2n4cqGhDME1ioL5FTuLQTlU6mrYb_xV_ImdfnGQwMfbASxSdYjvJ_WKfL3e_I-T1SElRZGHkhbHiXlxI4aUsUp7iTAV5muqRrUXw9SM_PRWTiTzr9X66XJjNnJeluL6Wl_9V1SADZZvU2Xuou-kUBHAOSocjqB2O_6Z4JJsyaSDIwY0MS7DN99bI1urGN4Yi2IyZjXwe_7CReGcL680r5ouramDCOwfVdIn1FQZX2jJCrK17wRBhwiAlhpFXNzz8LcfhoPuD3MYcLG1wki0V0mEDbeb9KTpkP_knfuPT1ua3FFId-C1A1ay-8m0rnH9X0xVWqYJrP_tdn0bIXBh0xzkZeoHEyjDNPI0MWfVMGwylwLTyPxYB9Edc-Lr8Bg-pZj4MEfttg5us27-thk2Mogt_u0hcP4npJ8F-HpCtkDMp-mTr6GQ8-dCs_pHA5DD3BJ2s9Nvv6HaDqGPknO-Qx_XuhB4hqp6Qni6fku16p0LrdaACkSsG4mTPyMbhjja4o4A72uKOOtzRRUEd7ijijiLuqMUdNbijDe4o4o5a3FHEHXW4e06-vB-fvzv26qIeXhYF4cpL80DmXESC5ywXQxMnCnt6zoNiGOmRoVLKJRNpVLA8zEGuYx6nacpGRSF0wXT0gvThzvUuoVLoXGRMB1rGMRhiSoJxBa2UUjIVPNgjzL3ZJKsZ703hlXnyd93ukTdNu0vkfLmzhXSKS2rLFS3SBDB5R9uX9x5tnzxqP5pXpL9arvUBeZhtVrNqeVgD8hcf2sPm
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+stability+and+non-unique+solution+of+reacting+Eyring+Powell+flows+over+shrinking+wedges+using+neural+networks&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Khan%2C+M.I.&rft.au=Zeeshan%2C+A.&rft.au=Arain%2C+M.B.&rft.au=Alqahtani%2C+A.S.&rft.date=2025-02-01&rft.issn=0952-1976&rft.volume=141&rft.spage=109828&rft_id=info:doi/10.1016%2Fj.engappai.2024.109828&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2024_109828
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon