Temporal stability and non-unique solution of reacting Eyring Powell flows over shrinking wedges using neural networks
In this paper, author presents an innovative artificial intelligence techniques based on deep learning simulation algorithms due to wide range of applications in science, robotics and engineering. The deep learning simulation algorithm using the Levenberg-Marquardt Scheme with Back Propagation Neura...
Uloženo v:
| Vydáno v: | Engineering applications of artificial intelligence Ročník 141; s. 109828 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.02.2025
|
| Témata: | |
| ISSN: | 0952-1976 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, author presents an innovative artificial intelligence techniques based on deep learning simulation algorithms due to wide range of applications in science, robotics and engineering. The deep learning simulation algorithm using the Levenberg-Marquardt Scheme with Back Propagation Neural Networks (LMS-BPNN) is evaluated in the flow investigation of the chemically reacting non-Newtonian fluid. An efficient similarity variable is applied to change Partial Differential Equations (PDEs) of a considered flow problem into dimensionless Ordinary Differential Equations (ODEs). An error is found to be 10−4 with function fit for scenarios 1–5, while performance in terms of mean squared error is found to be 10−10. It is seen that flow response output i.e. f′(η), θ(η) and ϕ(η) meet boundary requirements for different scenarios 1–5 with the deep learning-based technique LMS-BPNN. The dual solution is evaluated for flow response output parameter i.e. Cfx, Nux and Shx for different parameters with the proposed LMS-BPNN. The dual nature of Cfx is calculated for three cases of scenario 1, and the critical value is found to be −0.96195, −1.0581, and −1.11. The dual solution of Shx is calculated for various values of Kc=0.2,0.4,0.6, and it is found that λc=−1.1175 remains the same. The perturbation scheme is applied to the boundary layer problem to obtain the eigenvalues problem. The unsteady solution f(η,τ) converges to steady solution fo(η) for τ→∞ when γ≥0. However, an unsteady solution f(η,τ) diverges to a steady solution fo(η) for τ→∞ when γ<0. It is found that the boundary layer thickness for the second (lower branch) solution is higher than the first (upper branch) solution. This investigation is the evidence that the first (upper branch) solution is stable and reliable. |
|---|---|
| AbstractList | In this paper, author presents an innovative artificial intelligence techniques based on deep learning simulation algorithms due to wide range of applications in science, robotics and engineering. The deep learning simulation algorithm using the Levenberg-Marquardt Scheme with Back Propagation Neural Networks (LMS-BPNN) is evaluated in the flow investigation of the chemically reacting non-Newtonian fluid. An efficient similarity variable is applied to change Partial Differential Equations (PDEs) of a considered flow problem into dimensionless Ordinary Differential Equations (ODEs). An error is found to be 10−4 with function fit for scenarios 1–5, while performance in terms of mean squared error is found to be 10−10. It is seen that flow response output i.e. f′(η), θ(η) and ϕ(η) meet boundary requirements for different scenarios 1–5 with the deep learning-based technique LMS-BPNN. The dual solution is evaluated for flow response output parameter i.e. Cfx, Nux and Shx for different parameters with the proposed LMS-BPNN. The dual nature of Cfx is calculated for three cases of scenario 1, and the critical value is found to be −0.96195, −1.0581, and −1.11. The dual solution of Shx is calculated for various values of Kc=0.2,0.4,0.6, and it is found that λc=−1.1175 remains the same. The perturbation scheme is applied to the boundary layer problem to obtain the eigenvalues problem. The unsteady solution f(η,τ) converges to steady solution fo(η) for τ→∞ when γ≥0. However, an unsteady solution f(η,τ) diverges to a steady solution fo(η) for τ→∞ when γ<0. It is found that the boundary layer thickness for the second (lower branch) solution is higher than the first (upper branch) solution. This investigation is the evidence that the first (upper branch) solution is stable and reliable. |
| ArticleNumber | 109828 |
| Author | Khan, M.I. Alqahtani, A.S. Malik, M.Y. Zeeshan, A. Arain, M.B. |
| Author_xml | – sequence: 1 givenname: M.I. surname: Khan fullname: Khan, M.I. organization: Department of Mathematics and Statistics, Faculty of Sciences, International Islamic University, Islamabad, 44000, Pakistan – sequence: 2 givenname: A. orcidid: 0000-0002-2641-1575 surname: Zeeshan fullname: Zeeshan, A. email: ahmad.zeeshan@iiu.edu.pk organization: Department of Mathematics and Statistics, Faculty of Sciences, International Islamic University, Islamabad, 44000, Pakistan – sequence: 3 givenname: M.B. orcidid: 0000-0002-0506-7920 surname: Arain fullname: Arain, M.B. organization: State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China – sequence: 4 givenname: A.S. surname: Alqahtani fullname: Alqahtani, A.S. organization: Department of Mathematics, College of Sciences, King Khalid University, Abha, 61413, Saudi Arabia – sequence: 5 givenname: M.Y. surname: Malik fullname: Malik, M.Y. organization: Department of Mathematics, College of Sciences, King Khalid University, Abha, 61413, Saudi Arabia |
| BookMark | eNqFkM1OwzAQhH0oEm3hFZBfIMXOryNxAFXlR6oEh3K2nHhd3KZ2sJ1GfXsSFS5celrtjGZW-83QxFgDCN1RsqCE5ve7BZitaFuhFzGJ00EsWcwmaErKLI5oWeTXaOb9jhCSsDSfouMGDq11osE-iEo3OpywMBIPvVFn9HcH2NumC9oabBV2IOqgzRavTm4cH7aHpsGqsb3H9ggO-6_B2I9eD3ILHnd-XAx04xEDobdu72_QlRKNh9vfOUefz6vN8jVav7-8LZ_WUZ3QOESVpKUsWMIKmUlGKpVKmqZFQRVJIE8py2SZsSpRmYzloENapFVVZblSDFQGyRzl597aWe8dKN46fRDuxCnhIzG-43_E-EiMn4kNwYd_wVoHMWIITujmcvzxHIfhuaMGx32twdQgtYM6cGn1pYofWD6T2A |
| CitedBy_id | crossref_primary_10_1016_j_cjph_2025_02_001 crossref_primary_10_1002_zamm_70193 crossref_primary_10_1016_j_tsep_2025_103697 crossref_primary_10_1016_j_ijft_2025_101382 crossref_primary_10_1016_j_icheatmasstransfer_2025_109569 crossref_primary_10_1007_s41939_025_00869_1 crossref_primary_10_1007_s41939_025_01017_5 |
| Cites_doi | 10.17576/jsm-2019-4801-28 10.3390/sym12020276 10.1038/s41598-022-14384-7 10.1016/j.ijmecsci.2015.11.018 10.1016/j.csite.2018.11.007 10.1016/j.cjph.2020.02.002 10.1016/j.jppr.2020.03.001 10.3390/math12101420 10.1166/jon.2019.1660 10.1016/j.aej.2020.10.020 10.1016/j.ijthermalsci.2016.06.003 10.1016/j.rinp.2017.08.020 10.1063/1.4947130 10.1016/j.ijheatmasstransfer.2012.07.033 10.1016/j.csite.2023.103086 10.1016/j.icheatmasstransfer.2021.105799 10.1016/j.ijengsci.2006.04.005 10.17576/jsm-2017-4609-40 10.1016/j.tsep.2017.09.003 10.1007/s10973-023-12699-9 10.3390/pr11092736 10.1166/jon.2015.1177 10.1007/BF01251888 10.1016/j.molliq.2016.05.022 10.1016/j.jtice.2022.104510 10.1063/1.4943398 10.1016/j.triboint.2024.110182 10.1038/s41598-018-31777-9 10.1016/j.aej.2017.08.007 10.1108/HFF-03-2023-0135 10.1016/j.applthermaleng.2016.10.159 10.1007/s10483-020-2584-7 10.1016/j.cmpb.2016.07.019 10.1142/S0217979224500462 10.1016/j.imu.2017.07.006 10.1002/htj.22753 10.1515/ijcre-2014-0090 10.1016/j.powtec.2020.11.043 10.1016/j.tsep.2019.03.006 10.1016/j.ces.2012.04.026 10.1007/s00542-019-04364-9 10.1016/j.aej.2021.03.042 10.1080/02286203.2022.2035948 10.1016/j.molliq.2017.02.030 10.1016/j.jmrt.2020.05.085 10.1016/j.energy.2010.12.029 10.1007/BF02478259 10.1007/s00521-019-04221-w 10.1016/j.ijheatmasstransfer.2017.03.037 10.4283/JMAG.2019.24.2.202 10.1016/j.rinp.2017.11.039 10.1016/j.ijheatmasstransfer.2006.02.056 10.1016/j.csite.2021.100869 10.1108/HFF-04-2015-0159 10.37934/araset.29.2.185194 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2024.109828 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| ExternalDocumentID | 10_1016_j_engappai_2024_109828 S0952197624019870 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABJNI ABMAC ACDAQ ACGFS ACLOT ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TN5 ~G- ~HD 29G 9DU AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET UHS WUQ ZMT |
| ID | FETCH-LOGICAL-c312t-bd19d78387d5d80bf4d144771f03e64185d958b3f5d2d477e474bbb56ff8ef5e3 |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001386193200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Sat Nov 29 06:51:41 EST 2025 Tue Nov 18 20:59:35 EST 2025 Wed Dec 10 14:25:29 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Levenberg–marquardt algorithm/scheme Wedge flow Chemical reaction Application of AI Stability analysis Mixed convection Eyring powell fluid |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-bd19d78387d5d80bf4d144771f03e64185d958b3f5d2d477e474bbb56ff8ef5e3 |
| ORCID | 0000-0002-2641-1575 0000-0002-0506-7920 |
| ParticipantIDs | crossref_primary_10_1016_j_engappai_2024_109828 crossref_citationtrail_10_1016_j_engappai_2024_109828 elsevier_sciencedirect_doi_10_1016_j_engappai_2024_109828 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-01 2025-02-00 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Reddy, Das (bib55) 2016; 19 Anuar, Bachok, Arifin, Rosali (bib3) 2019; 11 Awaludin, Ahmad, Ishak (bib7) 2020; 9 Khan, Zeeshan, Ellahi, Bhatti (bib34) 2024; 12 Zaimi, Ishak, Pop (bib67) 2017; 46 Baazeem, Arif, Abodayeh (bib8) 2023; 11 Dawar, Shah, Tassaddiq, Kumam, Islam, Khan (bib13) 2021; 24 Dufera (bib15) 2021; 5 Pop, Naganthran, Nazar (bib50) 2016; 26 Yih (bib66) 1998; 128 Bush (bib9) 2018 Hussain, Ranjha, Anwar, Jahan, Ali (bib24) 2022; 139 Kamal, Zaimi, Ishak, Pop (bib28) 2019; 48 Kumar, Ramesh, Chandok (bib37) 2020; 65 Malik, Bibi, Khan, Salahuddin (bib42) 2016; 6 Chakraverty, Mall (bib10) 2017 Javed, Farooq, Ahmad, Anjum (bib26) 2019; 24 Zainal, Nazar, Naganthran, Pop (bib68) 2021; 60 Rehman, Chen, Hamid, Guedri (bib59) 2024; 38 Johnson (bib27) 2023; 43 Kumar, Raju, Mahanthesh, Gireesha, Varma (bib36) 2017; 16 Khan, Sultan, Khan (bib31) 2015; 13 Mishra, Hussain, Makinde, Seth (bib46) 2020; 52 Sangeetha, De (bib60) 2023; 52 Kumari, Jain (bib38) 2019; 8 Ray, Vasu, Murthy, Gorla (bib53) 2020; 6 Weidman, Kubitschek, Davis (bib65) 2006; 44 Hussain, Malik, Salahuddin, Bilal, Awais (bib22) 2017; 231 Othman, Yacob, Bachok, Ishak, Pop (bib49) 2017; 115 Alam, Khatun, Rahman, Vajravelu (bib1) 2016; 105 Omar, Osman, Mohamad, Jusoh, Ismail (bib48) 2023; 29 Colorado, Ali, García-Valladares, Hernández (bib11) 2011; 36 Noghrehabadi, Mirzaei, Ghalambaz, Chamkha, Ghanbarzadeh (bib47) 2017; 4 Zeeshan, Khan, Ellahi, Asghar (bib70) 2023; 33 Makinde, Animasaun (bib41) 2016; 109 Awaludin, Weidman, Ishak (bib5) 2016; 6 Gireesha, Gorla, Mahanthesh (bib18) 2015; 4 Rehman, Malik, Malik, Sandeep, Saba (bib56) 2017; 7 McCulloch, Pitts (bib43) 1943; 5 Su, Zheng, Zhang, Zhang (bib62) 2012; 78 Gholinia, Hosseinzadeh, Mehrzadi, Ganji, Ranjbar (bib16) 2019; 13 Reddappa (bib54) 2021; 12 Awaludin, Ishak, Pop (bib6) 2018; 8 Khan, Alzahrani, Hobiny, Ali (bib33) 2020; 9 Prasannakumara, Gireesha, Krishnamurthy, Kumar (bib51) 2017; 9 Dogonchi, Ganji (bib14) 2016; 220 Merrill, Beauchesne, Previte, Paullet, Weidman (bib44) 2006; 49 Hashim, Hamid, Khan (bib19) 2019; 25 Khan, Azam, Alshomrani (bib32) 2017; 110 Khan, Sardar (bib30) 2018; 8 Kudenatti, Jyothi (bib35) 2019; 11 Ur Rehman, Chen, Hamid (bib63) 2023; 148 Zeeshan, Khan, Feroz, Al-Duais, Mahmoud (bib69) 2022; 12 Liu, Zhu, Li, Huang, Bi (bib39) 2023; 47 Ali, Zaib (bib2) 2019; 26 Mishra, Baag, Bhatti (bib45) 2018; 57 Kasmani, Sivasankaran, Bhuvaneswari, Siri (bib29) 2015; 9 Raja, Shoaib, Hussain, Nisar, Islam (bib52) 2022; 130 Rehman, Chen, Khan, Hamid, Masmoudi (bib58) 2024 Das (bib12) 2012; 55 Sedki (bib61) 2023; 7 Rehman, Chen, Hamid, Qi (bib57) 2023; 830 Ghosh, Mukhopadhyay (bib17) 2020; 32 Waini, Ishak, Pop (bib64) 2020; 41 Lund, Omar, Khan, Sherif (bib40) 2020; 12 Arani, Aberoumand (bib4) 2021; 380 Hina, Mustafa, Hayat, Alsaedi (bib21) 2016; 135 Hecht-Nielsen (bib20) 1989 Israr Ur Rehman, Chen, Hamid, Jamshed, Eid, Duraihem, Alqahtani (bib25) 2023 Hussain, Ghaffar, Ali, Shahzad, Nisar, Alharthi, Jamshed (bib23) 2021; 60 Israr Ur Rehman (10.1016/j.engappai.2024.109828_bib25) 2023 Omar (10.1016/j.engappai.2024.109828_bib48) 2023; 29 Chakraverty (10.1016/j.engappai.2024.109828_bib10) 2017 Ghosh (10.1016/j.engappai.2024.109828_bib17) 2020; 32 Khan (10.1016/j.engappai.2024.109828_bib32) 2017; 110 Liu (10.1016/j.engappai.2024.109828_bib39) 2023; 47 Othman (10.1016/j.engappai.2024.109828_bib49) 2017; 115 Gholinia (10.1016/j.engappai.2024.109828_bib16) 2019; 13 Sedki (10.1016/j.engappai.2024.109828_bib61) 2023; 7 Kamal (10.1016/j.engappai.2024.109828_bib28) 2019; 48 Khan (10.1016/j.engappai.2024.109828_bib30) 2018; 8 Merrill (10.1016/j.engappai.2024.109828_bib44) 2006; 49 Johnson (10.1016/j.engappai.2024.109828_bib27) 2023; 43 Su (10.1016/j.engappai.2024.109828_bib62) 2012; 78 Rehman (10.1016/j.engappai.2024.109828_bib56) 2017; 7 Kumar (10.1016/j.engappai.2024.109828_bib37) 2020; 65 Ali (10.1016/j.engappai.2024.109828_bib2) 2019; 26 Khan (10.1016/j.engappai.2024.109828_bib31) 2015; 13 Mishra (10.1016/j.engappai.2024.109828_bib46) 2020; 52 Pop (10.1016/j.engappai.2024.109828_bib50) 2016; 26 Khan (10.1016/j.engappai.2024.109828_bib33) 2020; 9 Kudenatti (10.1016/j.engappai.2024.109828_bib35) 2019; 11 Raja (10.1016/j.engappai.2024.109828_bib52) 2022; 130 Javed (10.1016/j.engappai.2024.109828_bib26) 2019; 24 Gireesha (10.1016/j.engappai.2024.109828_bib18) 2015; 4 Zeeshan (10.1016/j.engappai.2024.109828_bib69) 2022; 12 Hussain (10.1016/j.engappai.2024.109828_bib23) 2021; 60 Reddappa (10.1016/j.engappai.2024.109828_bib54) 2021; 12 Mishra (10.1016/j.engappai.2024.109828_bib45) 2018; 57 Zeeshan (10.1016/j.engappai.2024.109828_bib70) 2023; 33 Prasannakumara (10.1016/j.engappai.2024.109828_bib51) 2017; 9 Ray (10.1016/j.engappai.2024.109828_bib53) 2020; 6 Waini (10.1016/j.engappai.2024.109828_bib64) 2020; 41 Rehman (10.1016/j.engappai.2024.109828_bib59) 2024; 38 Anuar (10.1016/j.engappai.2024.109828_bib3) 2019; 11 Hashim (10.1016/j.engappai.2024.109828_bib19) 2019; 25 Arani (10.1016/j.engappai.2024.109828_bib4) 2021; 380 Rehman (10.1016/j.engappai.2024.109828_bib58) 2024 Awaludin (10.1016/j.engappai.2024.109828_bib5) 2016; 6 Malik (10.1016/j.engappai.2024.109828_bib42) 2016; 6 Reddy (10.1016/j.engappai.2024.109828_bib55) 2016; 19 Zaimi (10.1016/j.engappai.2024.109828_bib67) 2017; 46 Sangeetha (10.1016/j.engappai.2024.109828_bib60) 2023; 52 Dufera (10.1016/j.engappai.2024.109828_bib15) 2021; 5 Dogonchi (10.1016/j.engappai.2024.109828_bib14) 2016; 220 Colorado (10.1016/j.engappai.2024.109828_bib11) 2011; 36 Zainal (10.1016/j.engappai.2024.109828_bib68) 2021; 60 Ur Rehman (10.1016/j.engappai.2024.109828_bib63) 2023; 148 Hussain (10.1016/j.engappai.2024.109828_bib22) 2017; 231 Lund (10.1016/j.engappai.2024.109828_bib40) 2020; 12 Noghrehabadi (10.1016/j.engappai.2024.109828_bib47) 2017; 4 Das (10.1016/j.engappai.2024.109828_bib12) 2012; 55 Yih (10.1016/j.engappai.2024.109828_bib66) 1998; 128 Hecht-Nielsen (10.1016/j.engappai.2024.109828_bib20) 1989 Kasmani (10.1016/j.engappai.2024.109828_bib29) 2015; 9 Alam (10.1016/j.engappai.2024.109828_bib1) 2016; 105 Hina (10.1016/j.engappai.2024.109828_bib21) 2016; 135 Kumar (10.1016/j.engappai.2024.109828_bib36) 2017; 16 Khan (10.1016/j.engappai.2024.109828_bib34) 2024; 12 Rehman (10.1016/j.engappai.2024.109828_bib57) 2023; 830 Kumari (10.1016/j.engappai.2024.109828_bib38) 2019; 8 Awaludin (10.1016/j.engappai.2024.109828_bib6) 2018; 8 McCulloch (10.1016/j.engappai.2024.109828_bib43) 1943; 5 Makinde (10.1016/j.engappai.2024.109828_bib41) 2016; 109 Weidman (10.1016/j.engappai.2024.109828_bib65) 2006; 44 Bush (10.1016/j.engappai.2024.109828_bib9) 2018 Hussain (10.1016/j.engappai.2024.109828_bib24) 2022; 139 Baazeem (10.1016/j.engappai.2024.109828_bib8) 2023; 11 Dawar (10.1016/j.engappai.2024.109828_bib13) 2021; 24 Awaludin (10.1016/j.engappai.2024.109828_bib7) 2020; 9 |
| References_xml | – volume: 8 start-page: 938 year: 2019 end-page: 946 ident: bib38 article-title: MHD convective boundary layer falkner-skan flow for powell-eyring fluid over a permeable moving wedge with heat source publication-title: J. Nanofluids – volume: 115 start-page: 1412 year: 2017 end-page: 1417 ident: bib49 article-title: Mixed convection boundary-layer stagnation point flow past a vertical stretching/shrinking surface in a nanofluid publication-title: Appl. Therm. Eng. – volume: 65 start-page: 187 year: 2020 end-page: 197 ident: bib37 article-title: Mathematical modeling and simulation for the flow of magneto-Powell-Eyring fluid in an annulus with concentric rotating cylinders publication-title: Chin. J. Phys. – volume: 8 start-page: 1 year: 2018 end-page: 8 ident: bib6 article-title: ‘‘On the stability of MHD boundary layer flow over a stretching/shrinking wedge,’’ publication-title: Sci. Rep. – volume: 57 start-page: 2435 year: 2018 end-page: 2443 ident: bib45 article-title: Study of heat and mass transfer on MHD Walters B′ nanofluid flow induced by a stretching porous surface publication-title: Alex. Eng. J. – start-page: 445 year: 1989 end-page: 453 ident: bib20 article-title: Neurocomputer applications publication-title: Neural Computers – volume: 25 start-page: 3287 year: 2019 end-page: 3297 ident: bib19 article-title: Transient flow and heat transfer mechanism for Williamson-nanomaterials caused by a stretching cylinder with variable thermal conductivity publication-title: Microsyst. Technol. – volume: 26 start-page: 215 year: 2019 end-page: 224 ident: bib2 article-title: ‘‘Unsteady flow of an Eyring-Powell nanofluid near stagnation point past a convectively heated stretching sheet,’’ publication-title: Arab J. Basic Appl. Sci. – volume: 231 start-page: 341 year: 2017 end-page: 352 ident: bib22 article-title: Combined effects of viscous dissipation and Joule heating on MHD Sisko nanofluid over a stretching cylinder publication-title: J. Mol. Liq. – volume: 12 year: 2022 ident: bib69 article-title: Visualization of non-Newtonian convective fluid flow with internal heat transfer across a rotating stretchable surface impact of chemical reaction publication-title: Sci. Rep. – volume: 6 year: 2016 ident: bib42 article-title: Numerical solution of Williamson fluid flow past a stretching cylinder and heat transfer with variable thermal conductivity and heat generation/absorption publication-title: AIP Adv. – volume: 11 start-page: 21 year: 2019 end-page: 33 ident: bib3 article-title: Effect of suction/injection on stagnation point flow of hybrid nanofluid over an exponentially shrinking sheet with stability analysis publication-title: CFD Lett. – volume: 7 year: 2023 ident: bib61 article-title: Computational analysis of MHD Cross nanofluid containing gyrotactic microorganisms over a permeable horizontal cylinder through a porous medium in presence of thermal radiation and chemical reaction publication-title: Part. Differ. Equ. Appl. Math. – volume: 5 year: 2021 ident: bib15 article-title: ‘‘Deep neural network for system of ordinary differential equations: vectorized algorithm and simulation,’’ publication-title: Mach. Learn. Appl. – volume: 12 start-page: 730 year: 2021 end-page: 739 ident: bib54 article-title: Analysis of the boundary layer flow of thermally conducting Jeffrey fluid over a stratified exponentially stretching sheet publication-title: Turkish J. Comput. Math. Educ. (TURCOMAT) – volume: 5 start-page: 115 year: 1943 end-page: 133 ident: bib43 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull. Math. Biophys. – volume: 49 start-page: 4681 year: 2006 end-page: 4686 ident: bib44 article-title: Final steady flow near a stagnation point on a vertical surface in a porous medium publication-title: Int. J. Heat Mass Tran. – volume: 60 start-page: 915 year: 2021 end-page: 926 ident: bib68 article-title: ‘‘Stability analysis of MHD hybrid nanofluid flow over a stretching/shrinking sheet with quadratic velocity,’’ publication-title: Alex. Eng. J. – volume: 135 start-page: 89 year: 2016 end-page: 100 ident: bib21 article-title: Peristaltic flow of Powell-Eyring fluid in curved channel with heat transfer: a useful application in biomedicine publication-title: Comput. Methods Progr. Biomed. – volume: 9 start-page: 181 year: 2020 end-page: 187 ident: bib7 article-title: On the stability of the flow over a shrinking cylinder with prescribed surface heat flux publication-title: Propul. Power Res. – volume: 29 start-page: 185 year: 2023 end-page: 194 ident: bib48 article-title: Analytical solution of unsteady MHD Casson fluid with thermal radiation and chemical reaction in porous medium publication-title: J. Adv. Res. Appl. Sci. Eng. Technol. – volume: 16 year: 2017 ident: bib36 article-title: Chemical reaction effects on Nano Carreau liquid flow past a cone and a wedge with Cattaneo-Christov heat flux model publication-title: Int. J. Chem. React. Eng. – year: 2024 ident: bib58 article-title: Modeling and predicting heat transfer performance in bioconvection flow around a circular cylinder using an artificial neural network approach publication-title: Tribol. Int. – volume: 9 start-page: 9951 year: 2020 end-page: 9964 ident: bib33 article-title: Estimation of entropy generation in Carreau-Yasuda fluid flow using chemical reaction with activation energy publication-title: J. Mater. Res. Technol. – volume: 9 start-page: 123 year: 2017 end-page: 132 ident: bib51 article-title: MHD flow and nonlinear radiative heat transfer of Sisko nanofluid over a nonlinear stretching sheet publication-title: Inform. Med. Unlocked – volume: 32 start-page: 7201 year: 2020 end-page: 7211 ident: bib17 article-title: Stability analysis for model-based study of nanofluid flow over an exponentially shrinking permeable sheet in presence of slip publication-title: Neural Comput. Appl. – volume: 13 start-page: 37 year: 2015 end-page: 49 ident: bib31 article-title: Heat and mass transfer of thermophoretic MHD flow of Powell–Eyring fluid over a vertical stretching sheet in the presence of chemical reaction and Joule heating publication-title: Int. J. Chem. React. Eng. – volume: 11 start-page: 2736 year: 2023 ident: bib8 article-title: ‘‘An efficient and accurate approach to electrical boundary layer nanofluid flow simulation: a use of artificial intelligence,’’ publication-title: Processes – volume: 830 year: 2023 ident: bib57 article-title: Numerical analysis of unsteady non-linear mixed convection flow of reiner-philippoff nanofluid along Falkner-Skan wedge with new mass flux condition publication-title: Chem. Phys. Lett. – year: 2017 ident: bib10 article-title: ‘‘Artificial Neural Networks for Engineers and Scientists: Solving Ordinary Differential Equations,’’ – volume: 36 start-page: 854 year: 2011 end-page: 863 ident: bib11 article-title: ‘‘Heat transfer using a correlation by neural network for natural convection from vertical helical coil in oil and glycerol/water solution,’’ publication-title: Energy – volume: 109 start-page: 159 year: 2016 end-page: 171 ident: bib41 article-title: Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution publication-title: Int. J. Therm. Sci. – volume: 7 start-page: 2997 year: 2017 end-page: 3006 ident: bib56 article-title: Numerical study of double stratification in Casson fluid flow in the presence of mixed convection and chemical reaction publication-title: Results Phys. – volume: 38 year: 2024 ident: bib59 article-title: Analysis of Cattaneo–Christov heat flux and thermal radiation on Darcy–Forchheimer flow of Reiner–Philippoff fluid publication-title: Int. J. Mod. Phys. B – volume: 52 start-page: 259 year: 2020 end-page: 271 ident: bib46 article-title: ‘‘Stability analysis and multiple solutions of a hydromagnetic dissipative flow over a stretching/shrinking sheet,’’ Bulgarian publication-title: Chem. Commun. – volume: 6 start-page: 1 year: 2020 end-page: 22 ident: bib53 article-title: Non-similar solution of Eyring–Powell fluid flow and heat transfer with convective boundary condition: homotopy Analysis Method publication-title: Int. J. Algorithm. Comput. Math. – volume: 130 year: 2022 ident: bib52 article-title: ‘‘Computational intelligence of Levenberg-Marquardt backpropagation neural networks to study thermal radiation and Hall effects on boundary layer flow past a stretching sheet publication-title: Int. Commun. Heat Mass Tran. – volume: 12 start-page: 1420 year: 2024 ident: bib34 article-title: Advanced computational framework to analyze the stability of non-Newtonian fluid flow through a wedge with non-linear thermal radiation and chemical reactions publication-title: Mathematics – volume: 12 start-page: 276 year: 2020 ident: bib40 article-title: ‘‘Dual solutions and stability analysis of a hybrid nanofluid over a stretching/shrinking sheet executing MHD flow,’’ publication-title: Symmetry – volume: 26 start-page: 1747 year: 2016 end-page: 1767 ident: bib50 article-title: Numerical solutions of non-alignment stagnation-point flow and heat transfer over a stretching/shrinking surface in a nanofluid publication-title: Int. J. Numer. Methods Heat Fluid Flow – volume: 4 start-page: 474 year: 2015 end-page: 484 ident: bib18 article-title: Effect of suspended nanoparticles on three-dimensional MHD flow, heat and mass transfer of radiating Eyring-Powell fluid over a stretching sheet publication-title: J. Nanofluids – volume: 139 year: 2022 ident: bib24 article-title: ‘‘Eyring-Powell model flow near a convectively heated porous wedge with chemical reaction effects,’’ publication-title: J. Taiwan Inst. Chem. Eng. – year: 2023 ident: bib25 article-title: Thermal analysis of radiative and electromagnetic flowing of hybridity nanofluid via Darcy–Forchheimer porous material with slippage constraints publication-title: Energy Environ. – volume: 52 start-page: 1529 year: 2023 end-page: 1551 ident: bib60 article-title: Bioconvective Casson nanofluid flow toward stagnation point in non‐Darcy porous medium with buoyancy effects, chemical reaction, and thermal radiation publication-title: Heat Transfer – volume: 4 start-page: 150 year: 2017 end-page: 159 ident: bib47 article-title: Boundary layer flow heat and mass transfer study of Sakiadis flow of viscoelastic nanofluids using hybrid neural network-particle swarm optimization (HNNPSO) publication-title: Therm. Sci. Eng. Prog. – volume: 148 start-page: 13883 year: 2023 end-page: 13894 ident: bib63 article-title: Multi-physics modeling of magnetohydrodynamic Carreau fluid flow with thermal radiation and Darcy–Forchheimer effects: a study on Soret and Dufour phenomena publication-title: J. Therm. Anal. Calorim. – volume: 9 start-page: 379 year: 2015 end-page: 388 ident: bib29 article-title: ‘‘Effect of chemical reaction on convective heat transfer of boundary layer flow in nanofluid over a wedge with heat generation/absorption and suction,’’ publication-title: J. Appl. Fluid Mech. – volume: 78 start-page: 1 year: 2012 end-page: 8 ident: bib62 article-title: MHD mixed convective heat transfer over a permeable stretching wedge with thermal radiation and ohmic heating publication-title: Chem. Eng. Sci. – volume: 110 start-page: 437 year: 2017 end-page: 446 ident: bib32 article-title: Effects of melting and heat generation/absorption on unsteady Falkner-Skan flow of Carreau nanofluid over a wedge publication-title: Int. J. Heat Mass Tran. – volume: 41 start-page: 507 year: 2020 end-page: 520 ident: bib64 article-title: ‘‘MHD flow and heat transfer of a hybrid nanofluid past a permeable stretching/shrinking wedge,’’ publication-title: Appl. Math. Mech. – volume: 24 start-page: 202 year: 2019 end-page: 211 ident: bib26 article-title: Melting heat transfer in thermally stratified magnetohydrodynamic flow of eyring-powell fluid with homogeneous-heterogeneous reaction publication-title: J. Magn. – volume: 47 year: 2023 ident: bib39 article-title: ‘‘Computational simulation of mass transfer in membranes using hybrid machine learning models and computational fluid dynamics,’’ publication-title: Case Stud. Therm. Eng. – volume: 60 start-page: 5473 year: 2021 end-page: 5483 ident: bib23 article-title: MHD thermal boundary layer flow of a Casson fluid over a penetrable stretching wedge in the existence of nonlinear radiation and convective boundary condition publication-title: Alex. Eng. J. – volume: 43 start-page: 87 year: 2023 end-page: 100 ident: bib27 article-title: Impact of radiation and heat generation/absorption in a Walters' B fluid through a porous medium with thermal and thermo diffusion in the presence of chemical reaction publication-title: Int. J. Model. Simulat. – volume: 24 year: 2021 ident: bib13 article-title: A convective flow of Williamson nanofluid through cone and wedge with non-isothermal and non-isosolutal conditions: a revised Buongiorno model publication-title: Case Stud. Therm. Eng. – volume: 33 start-page: 3492 year: 2023 end-page: 3518 ident: bib70 article-title: ‘‘Artificial neural network simulation and sensitivity analysis for optimal thermal transport of magnetic viscous fluid over shrinking wedge via RSM,’’ publication-title: Int. J. Numer. Methods Heat Fluid Flow – volume: 6 year: 2016 ident: bib5 article-title: Stability analysis of stagnation-point flow over a stretching/shrinking sheet publication-title: AIP Adv. – volume: 55 start-page: 7166 year: 2012 end-page: 7174 ident: bib12 article-title: Influence of thermophoresis and chemical reaction on MHD micropolar fluid flow with variable fluid properties publication-title: Int. J. Heat Mass Tran. – volume: 48 start-page: 243 year: 2019 end-page: 250 ident: bib28 article-title: ‘‘Stability analysis of MHD stagnation-point flow towards a permeable stretching/shrinking sheet in a nanofluid with chemical reactions effect,’’ publication-title: Sains Malays. – volume: 105 start-page: 191 year: 2016 end-page: 205 ident: bib1 article-title: Effects of variable fluid properties and thermophoresis on unsteady forced convective boundary layer flow along a permeable stretching/shrinking wedge with variable Prandtl and Schmidt numbers publication-title: Int. J. Mech. Sci. – volume: 44 start-page: 730 year: 2006 end-page: 737 ident: bib65 article-title: The effect of transpiration on self-similar boundary layer flow over moving surfaces publication-title: Int. J. Eng. Sci. – volume: 46 start-page: 1667 year: 2017 end-page: 1674 ident: bib67 article-title: Unsteady flow of a nanofluid past a permeable shrinking cylinder using Buongiorno's model publication-title: Sains Malays. – volume: 13 year: 2019 ident: bib16 article-title: Investigation of MHD Eyring–Powell fluid flow over a rotating disk under effect of homogeneous–heterogeneous reactions publication-title: Case Stud. Therm. Eng. – volume: 11 start-page: 66 year: 2019 end-page: 73 ident: bib35 article-title: Two-dimensional boundary-layer flow and heat transfer over a wedge: numerical and asymptotic solutions publication-title: Therm. Sci. Eng. Prog. – volume: 8 start-page: 516 year: 2018 end-page: 523 ident: bib30 article-title: On steady two-dimensional Carreau fluid flow over a wedge in the presence of infinite shear rate viscosity publication-title: Results Phys. – year: 2018 ident: bib9 article-title: ‘‘Perturbation Methods for Engineers and Scientists,’’ – volume: 380 start-page: 152 year: 2021 end-page: 163 ident: bib4 article-title: ‘‘Stagnation-point flow of Ag-CuO/water hybrid nanofluids over a permeable stretching/shrinking sheet with temporal stability analysis,’’ publication-title: Powder Technol. – volume: 128 start-page: 173 year: 1998 end-page: 181 ident: bib66 article-title: Uniform suction/blowing effect on forced convection about a wedge: uniform heat flux publication-title: Acta Mech. – volume: 220 start-page: 592 year: 2016 end-page: 603 ident: bib14 article-title: ‘‘Investigation of MHD nano fluid flow and heat transfer in a stretching/shrinking convergent/divergent channel considering thermal radiation publication-title: J. Mol. Liq. – volume: 19 start-page: 1108 year: 2016 end-page: 1116 ident: bib55 article-title: ‘‘Estimation of MHD boundary layer slip flow over a permeable stretching cylinder in the presence of chemical reaction through numerical and artificial neural network modeling,’’ publication-title: Eng. Sci. Technol. Int. J. – volume: 48 start-page: 243 issue: 1 year: 2019 ident: 10.1016/j.engappai.2024.109828_bib28 article-title: ‘‘Stability analysis of MHD stagnation-point flow towards a permeable stretching/shrinking sheet in a nanofluid with chemical reactions effect,’’ publication-title: Sains Malays. doi: 10.17576/jsm-2019-4801-28 – volume: 12 start-page: 276 issue: 2 year: 2020 ident: 10.1016/j.engappai.2024.109828_bib40 article-title: ‘‘Dual solutions and stability analysis of a hybrid nanofluid over a stretching/shrinking sheet executing MHD flow,’’ publication-title: Symmetry doi: 10.3390/sym12020276 – volume: 12 issue: 1 year: 2022 ident: 10.1016/j.engappai.2024.109828_bib69 article-title: Visualization of non-Newtonian convective fluid flow with internal heat transfer across a rotating stretchable surface impact of chemical reaction publication-title: Sci. Rep. doi: 10.1038/s41598-022-14384-7 – volume: 6 start-page: 1 year: 2020 ident: 10.1016/j.engappai.2024.109828_bib53 article-title: Non-similar solution of Eyring–Powell fluid flow and heat transfer with convective boundary condition: homotopy Analysis Method publication-title: Int. J. Algorithm. Comput. Math. – volume: 105 start-page: 191 year: 2016 ident: 10.1016/j.engappai.2024.109828_bib1 article-title: Effects of variable fluid properties and thermophoresis on unsteady forced convective boundary layer flow along a permeable stretching/shrinking wedge with variable Prandtl and Schmidt numbers publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2015.11.018 – volume: 13 year: 2019 ident: 10.1016/j.engappai.2024.109828_bib16 article-title: Investigation of MHD Eyring–Powell fluid flow over a rotating disk under effect of homogeneous–heterogeneous reactions publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2018.11.007 – volume: 65 start-page: 187 year: 2020 ident: 10.1016/j.engappai.2024.109828_bib37 article-title: Mathematical modeling and simulation for the flow of magneto-Powell-Eyring fluid in an annulus with concentric rotating cylinders publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2020.02.002 – volume: 9 start-page: 181 issue: 2 year: 2020 ident: 10.1016/j.engappai.2024.109828_bib7 article-title: On the stability of the flow over a shrinking cylinder with prescribed surface heat flux publication-title: Propul. Power Res. doi: 10.1016/j.jppr.2020.03.001 – volume: 12 start-page: 1420 issue: 10 year: 2024 ident: 10.1016/j.engappai.2024.109828_bib34 article-title: Advanced computational framework to analyze the stability of non-Newtonian fluid flow through a wedge with non-linear thermal radiation and chemical reactions publication-title: Mathematics doi: 10.3390/math12101420 – volume: 8 start-page: 938 issue: 5 year: 2019 ident: 10.1016/j.engappai.2024.109828_bib38 article-title: MHD convective boundary layer falkner-skan flow for powell-eyring fluid over a permeable moving wedge with heat source publication-title: J. Nanofluids doi: 10.1166/jon.2019.1660 – volume: 60 start-page: 915 issue: 1 year: 2021 ident: 10.1016/j.engappai.2024.109828_bib68 article-title: ‘‘Stability analysis of MHD hybrid nanofluid flow over a stretching/shrinking sheet with quadratic velocity,’’ publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2020.10.020 – volume: 109 start-page: 159 year: 2016 ident: 10.1016/j.engappai.2024.109828_bib41 article-title: Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2016.06.003 – volume: 7 start-page: 2997 year: 2017 ident: 10.1016/j.engappai.2024.109828_bib56 article-title: Numerical study of double stratification in Casson fluid flow in the presence of mixed convection and chemical reaction publication-title: Results Phys. doi: 10.1016/j.rinp.2017.08.020 – volume: 6 issue: 4 year: 2016 ident: 10.1016/j.engappai.2024.109828_bib5 article-title: Stability analysis of stagnation-point flow over a stretching/shrinking sheet publication-title: AIP Adv. doi: 10.1063/1.4947130 – volume: 55 start-page: 7166 issue: 23–24 year: 2012 ident: 10.1016/j.engappai.2024.109828_bib12 article-title: Influence of thermophoresis and chemical reaction on MHD micropolar fluid flow with variable fluid properties publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2012.07.033 – volume: 47 year: 2023 ident: 10.1016/j.engappai.2024.109828_bib39 article-title: ‘‘Computational simulation of mass transfer in membranes using hybrid machine learning models and computational fluid dynamics,’’ publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2023.103086 – volume: 130 year: 2022 ident: 10.1016/j.engappai.2024.109828_bib52 article-title: ‘‘Computational intelligence of Levenberg-Marquardt backpropagation neural networks to study thermal radiation and Hall effects on boundary layer flow past a stretching sheet publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2021.105799 – volume: 44 start-page: 730 issue: 11–12 year: 2006 ident: 10.1016/j.engappai.2024.109828_bib65 article-title: The effect of transpiration on self-similar boundary layer flow over moving surfaces publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2006.04.005 – volume: 46 start-page: 1667 issue: 9 year: 2017 ident: 10.1016/j.engappai.2024.109828_bib67 article-title: Unsteady flow of a nanofluid past a permeable shrinking cylinder using Buongiorno's model publication-title: Sains Malays. doi: 10.17576/jsm-2017-4609-40 – volume: 4 start-page: 150 year: 2017 ident: 10.1016/j.engappai.2024.109828_bib47 article-title: Boundary layer flow heat and mass transfer study of Sakiadis flow of viscoelastic nanofluids using hybrid neural network-particle swarm optimization (HNNPSO) publication-title: Therm. Sci. Eng. Prog. doi: 10.1016/j.tsep.2017.09.003 – volume: 12 start-page: 730 issue: 13 year: 2021 ident: 10.1016/j.engappai.2024.109828_bib54 article-title: Analysis of the boundary layer flow of thermally conducting Jeffrey fluid over a stratified exponentially stretching sheet publication-title: Turkish J. Comput. Math. Educ. (TURCOMAT) – volume: 148 start-page: 13883 issue: 24 year: 2023 ident: 10.1016/j.engappai.2024.109828_bib63 article-title: Multi-physics modeling of magnetohydrodynamic Carreau fluid flow with thermal radiation and Darcy–Forchheimer effects: a study on Soret and Dufour phenomena publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-023-12699-9 – volume: 19 start-page: 1108 issue: 3 year: 2016 ident: 10.1016/j.engappai.2024.109828_bib55 article-title: ‘‘Estimation of MHD boundary layer slip flow over a permeable stretching cylinder in the presence of chemical reaction through numerical and artificial neural network modeling,’’ publication-title: Eng. Sci. Technol. Int. J. – volume: 11 start-page: 2736 issue: 9 year: 2023 ident: 10.1016/j.engappai.2024.109828_bib8 article-title: ‘‘An efficient and accurate approach to electrical boundary layer nanofluid flow simulation: a use of artificial intelligence,’’ publication-title: Processes doi: 10.3390/pr11092736 – volume: 4 start-page: 474 issue: 4 year: 2015 ident: 10.1016/j.engappai.2024.109828_bib18 article-title: Effect of suspended nanoparticles on three-dimensional MHD flow, heat and mass transfer of radiating Eyring-Powell fluid over a stretching sheet publication-title: J. Nanofluids doi: 10.1166/jon.2015.1177 – volume: 128 start-page: 173 issue: 3 year: 1998 ident: 10.1016/j.engappai.2024.109828_bib66 article-title: Uniform suction/blowing effect on forced convection about a wedge: uniform heat flux publication-title: Acta Mech. doi: 10.1007/BF01251888 – volume: 220 start-page: 592 year: 2016 ident: 10.1016/j.engappai.2024.109828_bib14 article-title: ‘‘Investigation of MHD nano fluid flow and heat transfer in a stretching/shrinking convergent/divergent channel considering thermal radiation publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.05.022 – volume: 139 year: 2022 ident: 10.1016/j.engappai.2024.109828_bib24 article-title: ‘‘Eyring-Powell model flow near a convectively heated porous wedge with chemical reaction effects,’’ publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2022.104510 – year: 2023 ident: 10.1016/j.engappai.2024.109828_bib25 article-title: Thermal analysis of radiative and electromagnetic flowing of hybridity nanofluid via Darcy–Forchheimer porous material with slippage constraints publication-title: Energy Environ. – volume: 52 start-page: 259 issue: 2 year: 2020 ident: 10.1016/j.engappai.2024.109828_bib46 article-title: ‘‘Stability analysis and multiple solutions of a hydromagnetic dissipative flow over a stretching/shrinking sheet,’’ Bulgarian publication-title: Chem. Commun. – year: 2017 ident: 10.1016/j.engappai.2024.109828_bib10 – volume: 830 year: 2023 ident: 10.1016/j.engappai.2024.109828_bib57 article-title: Numerical analysis of unsteady non-linear mixed convection flow of reiner-philippoff nanofluid along Falkner-Skan wedge with new mass flux condition publication-title: Chem. Phys. Lett. – volume: 6 issue: 3 year: 2016 ident: 10.1016/j.engappai.2024.109828_bib42 article-title: Numerical solution of Williamson fluid flow past a stretching cylinder and heat transfer with variable thermal conductivity and heat generation/absorption publication-title: AIP Adv. doi: 10.1063/1.4943398 – start-page: 445 year: 1989 ident: 10.1016/j.engappai.2024.109828_bib20 article-title: Neurocomputer applications – year: 2024 ident: 10.1016/j.engappai.2024.109828_bib58 article-title: Modeling and predicting heat transfer performance in bioconvection flow around a circular cylinder using an artificial neural network approach publication-title: Tribol. Int. doi: 10.1016/j.triboint.2024.110182 – volume: 9 start-page: 379 issue: 1 year: 2015 ident: 10.1016/j.engappai.2024.109828_bib29 article-title: ‘‘Effect of chemical reaction on convective heat transfer of boundary layer flow in nanofluid over a wedge with heat generation/absorption and suction,’’ publication-title: J. Appl. Fluid Mech. – volume: 8 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.engappai.2024.109828_bib6 article-title: ‘‘On the stability of MHD boundary layer flow over a stretching/shrinking wedge,’’ publication-title: Sci. Rep. doi: 10.1038/s41598-018-31777-9 – volume: 57 start-page: 2435 issue: 4 year: 2018 ident: 10.1016/j.engappai.2024.109828_bib45 article-title: Study of heat and mass transfer on MHD Walters B′ nanofluid flow induced by a stretching porous surface publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2017.08.007 – volume: 33 start-page: 3492 issue: 10 year: 2023 ident: 10.1016/j.engappai.2024.109828_bib70 article-title: ‘‘Artificial neural network simulation and sensitivity analysis for optimal thermal transport of magnetic viscous fluid over shrinking wedge via RSM,’’ publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-03-2023-0135 – volume: 115 start-page: 1412 year: 2017 ident: 10.1016/j.engappai.2024.109828_bib49 article-title: Mixed convection boundary-layer stagnation point flow past a vertical stretching/shrinking surface in a nanofluid publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.10.159 – volume: 41 start-page: 507 issue: 3 year: 2020 ident: 10.1016/j.engappai.2024.109828_bib64 article-title: ‘‘MHD flow and heat transfer of a hybrid nanofluid past a permeable stretching/shrinking wedge,’’ publication-title: Appl. Math. Mech. doi: 10.1007/s10483-020-2584-7 – volume: 135 start-page: 89 year: 2016 ident: 10.1016/j.engappai.2024.109828_bib21 article-title: Peristaltic flow of Powell-Eyring fluid in curved channel with heat transfer: a useful application in biomedicine publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2016.07.019 – volume: 38 issue: 3 year: 2024 ident: 10.1016/j.engappai.2024.109828_bib59 article-title: Analysis of Cattaneo–Christov heat flux and thermal radiation on Darcy–Forchheimer flow of Reiner–Philippoff fluid publication-title: Int. J. Mod. Phys. B doi: 10.1142/S0217979224500462 – volume: 5 year: 2021 ident: 10.1016/j.engappai.2024.109828_bib15 article-title: ‘‘Deep neural network for system of ordinary differential equations: vectorized algorithm and simulation,’’ publication-title: Mach. Learn. Appl. – volume: 9 start-page: 123 year: 2017 ident: 10.1016/j.engappai.2024.109828_bib51 article-title: MHD flow and nonlinear radiative heat transfer of Sisko nanofluid over a nonlinear stretching sheet publication-title: Inform. Med. Unlocked doi: 10.1016/j.imu.2017.07.006 – volume: 52 start-page: 1529 issue: 2 year: 2023 ident: 10.1016/j.engappai.2024.109828_bib60 article-title: Bioconvective Casson nanofluid flow toward stagnation point in non‐Darcy porous medium with buoyancy effects, chemical reaction, and thermal radiation publication-title: Heat Transfer doi: 10.1002/htj.22753 – volume: 13 start-page: 37 issue: 1 year: 2015 ident: 10.1016/j.engappai.2024.109828_bib31 article-title: Heat and mass transfer of thermophoretic MHD flow of Powell–Eyring fluid over a vertical stretching sheet in the presence of chemical reaction and Joule heating publication-title: Int. J. Chem. React. Eng. doi: 10.1515/ijcre-2014-0090 – year: 2018 ident: 10.1016/j.engappai.2024.109828_bib9 – volume: 7 year: 2023 ident: 10.1016/j.engappai.2024.109828_bib61 article-title: Computational analysis of MHD Cross nanofluid containing gyrotactic microorganisms over a permeable horizontal cylinder through a porous medium in presence of thermal radiation and chemical reaction publication-title: Part. Differ. Equ. Appl. Math. – volume: 380 start-page: 152 year: 2021 ident: 10.1016/j.engappai.2024.109828_bib4 article-title: ‘‘Stagnation-point flow of Ag-CuO/water hybrid nanofluids over a permeable stretching/shrinking sheet with temporal stability analysis,’’ publication-title: Powder Technol. doi: 10.1016/j.powtec.2020.11.043 – volume: 11 start-page: 66 year: 2019 ident: 10.1016/j.engappai.2024.109828_bib35 article-title: Two-dimensional boundary-layer flow and heat transfer over a wedge: numerical and asymptotic solutions publication-title: Therm. Sci. Eng. Prog. doi: 10.1016/j.tsep.2019.03.006 – volume: 78 start-page: 1 year: 2012 ident: 10.1016/j.engappai.2024.109828_bib62 article-title: MHD mixed convective heat transfer over a permeable stretching wedge with thermal radiation and ohmic heating publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2012.04.026 – volume: 25 start-page: 3287 year: 2019 ident: 10.1016/j.engappai.2024.109828_bib19 article-title: Transient flow and heat transfer mechanism for Williamson-nanomaterials caused by a stretching cylinder with variable thermal conductivity publication-title: Microsyst. Technol. doi: 10.1007/s00542-019-04364-9 – volume: 60 start-page: 5473 issue: 6 year: 2021 ident: 10.1016/j.engappai.2024.109828_bib23 article-title: MHD thermal boundary layer flow of a Casson fluid over a penetrable stretching wedge in the existence of nonlinear radiation and convective boundary condition publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.03.042 – volume: 43 start-page: 87 issue: 2 year: 2023 ident: 10.1016/j.engappai.2024.109828_bib27 article-title: Impact of radiation and heat generation/absorption in a Walters' B fluid through a porous medium with thermal and thermo diffusion in the presence of chemical reaction publication-title: Int. J. Model. Simulat. doi: 10.1080/02286203.2022.2035948 – volume: 231 start-page: 341 year: 2017 ident: 10.1016/j.engappai.2024.109828_bib22 article-title: Combined effects of viscous dissipation and Joule heating on MHD Sisko nanofluid over a stretching cylinder publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2017.02.030 – volume: 9 start-page: 9951 issue: 5 year: 2020 ident: 10.1016/j.engappai.2024.109828_bib33 article-title: Estimation of entropy generation in Carreau-Yasuda fluid flow using chemical reaction with activation energy publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2020.05.085 – volume: 16 issue: 4 year: 2017 ident: 10.1016/j.engappai.2024.109828_bib36 article-title: Chemical reaction effects on Nano Carreau liquid flow past a cone and a wedge with Cattaneo-Christov heat flux model publication-title: Int. J. Chem. React. Eng. – volume: 36 start-page: 854 issue: 2 year: 2011 ident: 10.1016/j.engappai.2024.109828_bib11 article-title: ‘‘Heat transfer using a correlation by neural network for natural convection from vertical helical coil in oil and glycerol/water solution,’’ publication-title: Energy doi: 10.1016/j.energy.2010.12.029 – volume: 11 start-page: 21 issue: 12 year: 2019 ident: 10.1016/j.engappai.2024.109828_bib3 article-title: Effect of suction/injection on stagnation point flow of hybrid nanofluid over an exponentially shrinking sheet with stability analysis publication-title: CFD Lett. – volume: 26 start-page: 215 issue: 1 year: 2019 ident: 10.1016/j.engappai.2024.109828_bib2 article-title: ‘‘Unsteady flow of an Eyring-Powell nanofluid near stagnation point past a convectively heated stretching sheet,’’ publication-title: Arab J. Basic Appl. Sci. – volume: 5 start-page: 115 year: 1943 ident: 10.1016/j.engappai.2024.109828_bib43 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull. Math. Biophys. doi: 10.1007/BF02478259 – volume: 32 start-page: 7201 issue: 11 year: 2020 ident: 10.1016/j.engappai.2024.109828_bib17 article-title: Stability analysis for model-based study of nanofluid flow over an exponentially shrinking permeable sheet in presence of slip publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04221-w – volume: 110 start-page: 437 year: 2017 ident: 10.1016/j.engappai.2024.109828_bib32 article-title: Effects of melting and heat generation/absorption on unsteady Falkner-Skan flow of Carreau nanofluid over a wedge publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2017.03.037 – volume: 24 start-page: 202 issue: 2 year: 2019 ident: 10.1016/j.engappai.2024.109828_bib26 article-title: Melting heat transfer in thermally stratified magnetohydrodynamic flow of eyring-powell fluid with homogeneous-heterogeneous reaction publication-title: J. Magn. doi: 10.4283/JMAG.2019.24.2.202 – volume: 8 start-page: 516 year: 2018 ident: 10.1016/j.engappai.2024.109828_bib30 article-title: On steady two-dimensional Carreau fluid flow over a wedge in the presence of infinite shear rate viscosity publication-title: Results Phys. doi: 10.1016/j.rinp.2017.11.039 – volume: 49 start-page: 4681 issue: 23–24 year: 2006 ident: 10.1016/j.engappai.2024.109828_bib44 article-title: Final steady flow near a stagnation point on a vertical surface in a porous medium publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2006.02.056 – volume: 24 year: 2021 ident: 10.1016/j.engappai.2024.109828_bib13 article-title: A convective flow of Williamson nanofluid through cone and wedge with non-isothermal and non-isosolutal conditions: a revised Buongiorno model publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.100869 – volume: 26 start-page: 1747 issue: 6 year: 2016 ident: 10.1016/j.engappai.2024.109828_bib50 article-title: Numerical solutions of non-alignment stagnation-point flow and heat transfer over a stretching/shrinking surface in a nanofluid publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-04-2015-0159 – volume: 29 start-page: 185 issue: 2 year: 2023 ident: 10.1016/j.engappai.2024.109828_bib48 article-title: Analytical solution of unsteady MHD Casson fluid with thermal radiation and chemical reaction in porous medium publication-title: J. Adv. Res. Appl. Sci. Eng. Technol. doi: 10.37934/araset.29.2.185194 |
| SSID | ssj0003846 |
| Score | 2.4799917 |
| Snippet | In this paper, author presents an innovative artificial intelligence techniques based on deep learning simulation algorithms due to wide range of applications... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 109828 |
| SubjectTerms | Application of AI Chemical reaction Eyring powell fluid Levenberg–marquardt algorithm/scheme Mixed convection Stability analysis Wedge flow |
| Title | Temporal stability and non-unique solution of reacting Eyring Powell flows over shrinking wedges using neural networks |
| URI | https://dx.doi.org/10.1016/j.engappai.2024.109828 |
| Volume | 141 |
| WOSCitedRecordID | wos001386193200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0003846 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKxwMvfCPGl_zAW5WQj7qxHwcqYkhMkzakvkVxbNNOVTqattv-i_3JnH1xkolJAyFeougU20nuF_t8ufsdIe9h2uWyLCeBNIIHY6lEUMRCBVxqJRWzjO2RKzaRHR3x2UwcDwbXPhdmt8yqil9eivP_qmqQgbJt6uxfqLvtFARwDkqHI6gdjn-meCSbsmkgyMGNDEuwzQ-2yNbqx7eGItiMpYt8nl65SLzjlfPmmeXqoh7Z8M5RPV9jfYXRhXaMEFvnXrBEmDBIhWHk9Q0Pf8dxOOr_IHcxB2sXnORKhfTYQNt5f44O2W_hYdj6tLX9LYVUB2EH0GLRXPmxEy5_FvMNVqmCa0_Cvk8jYT4M2jvafLJNF9mEHsskiAWWi2knb6TN-m0hQJ_EWairH_CgxSKEYcaWO4s3ueg3SbZPbOe2bzBwrBsmukf2kowJPiR7B4fT2dd2dU85Jn_5m-llnd8-2u0GT8-IOX1MHja7D3qAqHlCBrp6Sh41OxHazPM1iHyxDy97RnYeV7TFFQVc0Q5X1OOKrgz1uKKIK4q4og5X1OKKtriiiCvqcEURV9Tj6jn5_nl6-ulL0BTtCMo0TjaBVPCpZzzlmWKKRzYOFPbsWRabKNUTS5WkBOMyNUwlCuR6nI2llGxiDNeG6fQFGcKd65eEgiKK2BgVpdLu4xXnKoo0rMdcZGUizT5h_s3mZcNobwurLHMfuniWe43kViM5amSffGjbnSOny50thFdc3limaHHmgLc72r76h7avyYPu83hDhpv1Vr8l98vdZlGv3zXQ_AXJ176S |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+stability+and+non-unique+solution+of+reacting+Eyring+Powell+flows+over+shrinking+wedges+using+neural+networks&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Khan%2C+M.I.&rft.au=Zeeshan%2C+A.&rft.au=Arain%2C+M.B.&rft.au=Alqahtani%2C+A.S.&rft.date=2025-02-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.volume=141&rft_id=info:doi/10.1016%2Fj.engappai.2024.109828&rft.externalDocID=S0952197624019870 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |