Small-gain theorem for a class of abstract parabolic systems

We consider a class of abstract control system of parabolic type with observation which the state, input and output spaces are Hilbert spaces. The state space operator is assumed to generate a linear exponentially stable analytic semigroup. An observation and control action are allowed to be describ...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Rocznik Akademii Górniczo-Hutniczej im. Stanisława Staszica. Opuscula Mathematica Ročník 38; číslo 5; s. 651 - 680
Hlavní autor: Grabowski, Piotr
Médium: Journal Article
Jazyk:angličtina
Vydáno: AGH Univeristy of Science and Technology Press 2018
Témata:
ISSN:1232-9274
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider a class of abstract control system of parabolic type with observation which the state, input and output spaces are Hilbert spaces. The state space operator is assumed to generate a linear exponentially stable analytic semigroup. An observation and control action are allowed to be described by unbounded operators. It is assumed that the observation operator is admissible but the control operator may be not. Such a system is controlled in a feedback loop by a controller with static characteristic being a globally Lipschitz map from the space of outputs into the space of controls. Our main interest is to obtain a perturbation theorem of the small-gain-type which guarantees that null equilibrium of the closed-loop system will be globally asymptotically stable in Lyapunov's sense.
ISSN:1232-9274
DOI:10.7494/OpMath.2018.38.5.651