A new form of Wigner functions on the noncommutative space

Wigner quasi-probability distribution function in phase space is a special (Weyl) representation of the density matrix. It has been very useful in many areas of quantum mechanics. Starting from fundamental principle of the Weyl correspondence, we derive explicit form of the Wigner function (WF) for...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physics letters. A Ročník 335; číslo 2; s. 185 - 190
Hlavní autoři: Jing, Sicong, Heng, Taihua, Zuo, Fen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 07.02.2005
Témata:
ISSN:0375-9601, 1873-2429
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Wigner quasi-probability distribution function in phase space is a special (Weyl) representation of the density matrix. It has been very useful in many areas of quantum mechanics. Starting from fundamental principle of the Weyl correspondence, we derive explicit form of the Wigner function (WF) for noncommutative quantum mechanics (NCQM), and prove that it satisfies a generalized *-genvalue equation. We also give some examples to show that the new form of WF indeed has this property.
ISSN:0375-9601
1873-2429
DOI:10.1016/j.physleta.2004.12.021