A new form of Wigner functions on the noncommutative space
Wigner quasi-probability distribution function in phase space is a special (Weyl) representation of the density matrix. It has been very useful in many areas of quantum mechanics. Starting from fundamental principle of the Weyl correspondence, we derive explicit form of the Wigner function (WF) for...
Uloženo v:
| Vydáno v: | Physics letters. A Ročník 335; číslo 2; s. 185 - 190 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
07.02.2005
|
| Témata: | |
| ISSN: | 0375-9601, 1873-2429 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Wigner quasi-probability distribution function in phase space is a special (Weyl) representation of the density matrix. It has been very useful in many areas of quantum mechanics. Starting from fundamental principle of the Weyl correspondence, we derive explicit form of the Wigner function (WF) for noncommutative quantum mechanics (NCQM), and prove that it satisfies a generalized *-genvalue equation. We also give some examples to show that the new form of WF indeed has this property. |
|---|---|
| ISSN: | 0375-9601 1873-2429 |
| DOI: | 10.1016/j.physleta.2004.12.021 |