The Bloch–Okounkov correlation functions of negative levels
Bloch and Okounkov introduced an n-point correlation function on the fermionic Fock space and found a closed formula in terms of theta functions. This function affords several distinguished interpretations and in particular can be formulated as correlation functions on irreducible gl ˆ ∞ -modules of...
Gespeichert in:
| Veröffentlicht in: | Journal of algebra Jg. 319; H. 1; S. 457 - 490 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
2008
|
| Schlagworte: | |
| ISSN: | 0021-8693, 1090-266X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Bloch and Okounkov introduced an
n-point correlation function on the fermionic Fock space and found a closed formula in terms of theta functions. This function affords several distinguished interpretations and in particular can be formulated as correlation functions on irreducible
gl
ˆ
∞
-modules of level one. These correlation functions have been generalized for irreducible integrable modules of
gl
ˆ
∞
and its classical Lie subalgebras of positive levels by the authors. In this paper we extend further these results and compute the correlation functions as well as the
q-dimensions for modules of
gl
ˆ
∞
and its classical subalgebras at negative levels. |
|---|---|
| ISSN: | 0021-8693 1090-266X |
| DOI: | 10.1016/j.jalgebra.2007.06.037 |