The Bloch–Okounkov correlation functions of negative levels
Bloch and Okounkov introduced an n-point correlation function on the fermionic Fock space and found a closed formula in terms of theta functions. This function affords several distinguished interpretations and in particular can be formulated as correlation functions on irreducible gl ˆ ∞ -modules of...
Uloženo v:
| Vydáno v: | Journal of algebra Ročník 319; číslo 1; s. 457 - 490 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
2008
|
| Témata: | |
| ISSN: | 0021-8693, 1090-266X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Bloch and Okounkov introduced an
n-point correlation function on the fermionic Fock space and found a closed formula in terms of theta functions. This function affords several distinguished interpretations and in particular can be formulated as correlation functions on irreducible
gl
ˆ
∞
-modules of level one. These correlation functions have been generalized for irreducible integrable modules of
gl
ˆ
∞
and its classical Lie subalgebras of positive levels by the authors. In this paper we extend further these results and compute the correlation functions as well as the
q-dimensions for modules of
gl
ˆ
∞
and its classical subalgebras at negative levels. |
|---|---|
| ISSN: | 0021-8693 1090-266X |
| DOI: | 10.1016/j.jalgebra.2007.06.037 |