The Bloch–Okounkov correlation functions of negative levels

Bloch and Okounkov introduced an n-point correlation function on the fermionic Fock space and found a closed formula in terms of theta functions. This function affords several distinguished interpretations and in particular can be formulated as correlation functions on irreducible gl ˆ ∞ -modules of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of algebra Ročník 319; číslo 1; s. 457 - 490
Hlavní autoři: Cheng, Shun-Jen, Taylor, David G., Wang, Weiqiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 2008
Témata:
ISSN:0021-8693, 1090-266X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Bloch and Okounkov introduced an n-point correlation function on the fermionic Fock space and found a closed formula in terms of theta functions. This function affords several distinguished interpretations and in particular can be formulated as correlation functions on irreducible gl ˆ ∞ -modules of level one. These correlation functions have been generalized for irreducible integrable modules of gl ˆ ∞ and its classical Lie subalgebras of positive levels by the authors. In this paper we extend further these results and compute the correlation functions as well as the q-dimensions for modules of gl ˆ ∞ and its classical subalgebras at negative levels.
ISSN:0021-8693
1090-266X
DOI:10.1016/j.jalgebra.2007.06.037