On exponential factorizations of matrices over Banach algebras
We study exponential factorization of invertible matrices over unital complex Banach algebras. In particular, we prove that every invertible matrix with entries in the algebra of holomorphic functions on a closed bordered Riemann surface can be written as a product of two exponents of matrices over...
Uloženo v:
| Vydáno v: | Journal of algebra Ročník 595; s. 132 - 144 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.04.2022
|
| Témata: | |
| ISSN: | 0021-8693, 1090-266X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We study exponential factorization of invertible matrices over unital complex Banach algebras. In particular, we prove that every invertible matrix with entries in the algebra of holomorphic functions on a closed bordered Riemann surface can be written as a product of two exponents of matrices over this algebra. Our result extends similar results proved earlier in [7] and [8] for 2×2 matrices. |
|---|---|
| ISSN: | 0021-8693 1090-266X |
| DOI: | 10.1016/j.jalgebra.2021.12.020 |