On exponential factorizations of matrices over Banach algebras
We study exponential factorization of invertible matrices over unital complex Banach algebras. In particular, we prove that every invertible matrix with entries in the algebra of holomorphic functions on a closed bordered Riemann surface can be written as a product of two exponents of matrices over...
Uložené v:
| Vydané v: | Journal of algebra Ročník 595; s. 132 - 144 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
01.04.2022
|
| Predmet: | |
| ISSN: | 0021-8693, 1090-266X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We study exponential factorization of invertible matrices over unital complex Banach algebras. In particular, we prove that every invertible matrix with entries in the algebra of holomorphic functions on a closed bordered Riemann surface can be written as a product of two exponents of matrices over this algebra. Our result extends similar results proved earlier in [7] and [8] for 2×2 matrices. |
|---|---|
| ISSN: | 0021-8693 1090-266X |
| DOI: | 10.1016/j.jalgebra.2021.12.020 |