On exponential factorizations of matrices over Banach algebras

We study exponential factorization of invertible matrices over unital complex Banach algebras. In particular, we prove that every invertible matrix with entries in the algebra of holomorphic functions on a closed bordered Riemann surface can be written as a product of two exponents of matrices over...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of algebra Ročník 595; s. 132 - 144
Hlavný autor: Brudnyi, Alexander
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.04.2022
Predmet:
ISSN:0021-8693, 1090-266X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We study exponential factorization of invertible matrices over unital complex Banach algebras. In particular, we prove that every invertible matrix with entries in the algebra of holomorphic functions on a closed bordered Riemann surface can be written as a product of two exponents of matrices over this algebra. Our result extends similar results proved earlier in [7] and [8] for 2×2 matrices.
ISSN:0021-8693
1090-266X
DOI:10.1016/j.jalgebra.2021.12.020