A Crash Course in Good and Bad Controls

Many students of statistics and econometrics express frustration with the way a problem known as “bad control” is treated in the traditional literature. The issue arises when the addition of a variable to a regression equation produces an unintended discrepancy between the regression coefficient and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sociological methods & research Ročník 53; číslo 3; s. 1071 - 1104
Hlavní autoři: Cinelli, Carlos, Forney, Andrew, Pearl, Judea
Médium: Journal Article
Jazyk:angličtina
Vydáno: Los Angeles, CA SAGE Publications 01.08.2024
SAGE PUBLICATIONS, INC
Témata:
ISSN:0049-1241, 1552-8294
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Many students of statistics and econometrics express frustration with the way a problem known as “bad control” is treated in the traditional literature. The issue arises when the addition of a variable to a regression equation produces an unintended discrepancy between the regression coefficient and the effect that the coefficient is intended to represent. Avoiding such discrepancies presents a challenge to all analysts in the data intensive sciences. This note describes graphical tools for understanding, visualizing, and resolving the problem through a series of illustrative examples. By making this “crash course” accessible to instructors and practitioners, we hope to avail these tools to a broader community of scientists concerned with the causal interpretation of regression models.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0049-1241
1552-8294
DOI:10.1177/00491241221099552