A novel fuzzy clustering based method for image segmentation in RGB-D images

Automatic image segmentation is a challenging task in computer vision applications, especially in the presence of occluded objects, varying color, and different lighting conditions. The advancement of depth-sensing technologies has introduced RGB-Depth cameras which are capable to generate RGB-Depth...

Full description

Saved in:
Bibliographic Details
Published in:Engineering applications of artificial intelligence Vol. 111; p. 104709
Main Authors: Yadav, Nand Kishor, Saraswat, Mukesh
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.05.2022
Subjects:
ISSN:0952-1976, 1873-6769
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Automatic image segmentation is a challenging task in computer vision applications, especially in the presence of occluded objects, varying color, and different lighting conditions. The advancement of depth-sensing technologies has introduced RGB-Depth cameras which are capable to generate RGB-Depth images and brought significant changes in computer vision applications. However, the segmentation of RGB-Depth images is a difficult task. Therefore, in this paper, a new segmentation method for RGB-Depth images has been introduced and named as random Henry gas solubility optimization-fuzzy clustering method. Firstly, a random Henry gas solubility optimization algorithm has been developed. Next, the proposed optimization algorithm has been employed to obtain optimal fuzzy clusters which are finally merged through segmentation by aggregating superpixels. The standard NYU depth V2 RGB-Depth indoor image dataset is used for performance evaluation. The proposed segmentation approach has been compared with five different methods namely, kmeans, fuzzy c-means, Henry gas solubility optimization algorithm, chaotic gravitational search algorithm, and J-Segmentation in terms of qualitative and quantitative measures. The result analysis shows that the proposed RGB-D segmentation method outperforms the other considered methods.
AbstractList Automatic image segmentation is a challenging task in computer vision applications, especially in the presence of occluded objects, varying color, and different lighting conditions. The advancement of depth-sensing technologies has introduced RGB-Depth cameras which are capable to generate RGB-Depth images and brought significant changes in computer vision applications. However, the segmentation of RGB-Depth images is a difficult task. Therefore, in this paper, a new segmentation method for RGB-Depth images has been introduced and named as random Henry gas solubility optimization-fuzzy clustering method. Firstly, a random Henry gas solubility optimization algorithm has been developed. Next, the proposed optimization algorithm has been employed to obtain optimal fuzzy clusters which are finally merged through segmentation by aggregating superpixels. The standard NYU depth V2 RGB-Depth indoor image dataset is used for performance evaluation. The proposed segmentation approach has been compared with five different methods namely, kmeans, fuzzy c-means, Henry gas solubility optimization algorithm, chaotic gravitational search algorithm, and J-Segmentation in terms of qualitative and quantitative measures. The result analysis shows that the proposed RGB-D segmentation method outperforms the other considered methods.
ArticleNumber 104709
Author Saraswat, Mukesh
Yadav, Nand Kishor
Author_xml – sequence: 1
  givenname: Nand Kishor
  orcidid: 0000-0002-1849-3224
  surname: Yadav
  fullname: Yadav, Nand Kishor
  email: nandkishor.yadav@gmail.com
– sequence: 2
  givenname: Mukesh
  orcidid: 0000-0002-3427-9105
  surname: Saraswat
  fullname: Saraswat, Mukesh
  email: saraswatmukesh@gmail.com
BookMark eNqFkNFKwzAUhoNMcJu-guQFOpOmTVrwwjl1CgNB9DqkyUnN6NKRdIPt6e2o3nizqwPn8P2c_5ugkW89IHRLyYwSyu_WM_C12m6Vm6UkTftlJkh5gca0ECzhgpcjNCZlnia0FPwKTWJcE0JYkfExWs2xb_fQYLs7Hg9YN7vYQXC-xpWKYPAGuu_WYNsG7DaqBhyh3oDvVOdaj53HH8vH5Gm4xWt0aVUT4eZ3TtHXy_Pn4jVZvS_fFvNVohlNu0SkLGcGeEZIAcyokvLMUKCZqlLLNc90bnMjWJpTUYEQKgNbKFoBh8waRdgU8SFXhzbGAFZuQ_9BOEhK5MmJXMs_J_LkRA5OevD-H6jdUKULyjXn8YcBh77c3kGQUTvwGowLoDtpWncu4gc8D4RI
CitedBy_id crossref_primary_10_1038_s41598_025_94318_1
crossref_primary_10_1007_s11831_025_10304_w
crossref_primary_10_1016_j_asoc_2022_109939
crossref_primary_10_1016_j_autcon_2023_105055
crossref_primary_10_1016_j_bspc_2024_107063
crossref_primary_10_3390_s23146612
crossref_primary_10_1007_s11760_024_03419_3
crossref_primary_10_1016_j_eswa_2024_124943
crossref_primary_10_1016_j_engappai_2024_109229
crossref_primary_10_1016_j_patcog_2022_108686
crossref_primary_10_1016_j_asoc_2025_113675
crossref_primary_10_1016_j_engappai_2023_107327
crossref_primary_10_1016_j_bspc_2025_108457
crossref_primary_10_3390_brainsci13060893
crossref_primary_10_1007_s11042_023_15267_3
crossref_primary_10_1109_ACCESS_2024_3365700
crossref_primary_10_3390_s25154652
crossref_primary_10_1016_j_asoc_2023_110268
crossref_primary_10_3390_buildings15050748
crossref_primary_10_3390_su16062417
crossref_primary_10_1016_j_engappai_2022_105162
crossref_primary_10_3390_electronics13061107
crossref_primary_10_1016_j_engappai_2025_110599
crossref_primary_10_1088_1361_6501_ad1816
Cites_doi 10.1016/j.cviu.2017.03.007
10.1023/A:1008202821328
10.1016/j.optlaseng.2019.06.011
10.1109/TPAMI.2015.2513407
10.3390/app8060902
10.1016/j.asoc.2018.05.006
10.1016/j.compag.2021.106237
10.1016/j.swevo.2013.11.003
10.1371/journal.pone.0150652
10.1016/j.future.2019.07.015
10.1016/0031-3203(91)90097-O
10.1109/IC3.2018.8530568
10.1016/j.jnggs.2018.02.001
10.1007/s00521-015-1920-1
10.1016/j.engappai.2018.03.001
10.1126/science.220.4598.671
10.1109/IC3.2016.7880252
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2022.104709
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2022_104709
S095219762200029X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c312t-72353de64008e3da9164d1e14ab2f6c64c5f5d732517be77a4ef8a1be6e4fda03
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000797949300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Tue Nov 18 22:39:08 EST 2025
Sat Nov 29 07:11:26 EST 2025
Fri Feb 23 02:39:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Henry gas solubility optimization
Image segmentation
Fuzzy clustering
Meta-heuristic optimization algorithms
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-72353de64008e3da9164d1e14ab2f6c64c5f5d732517be77a4ef8a1be6e4fda03
ORCID 0000-0002-1849-3224
0000-0002-3427-9105
ParticipantIDs crossref_primary_10_1016_j_engappai_2022_104709
crossref_citationtrail_10_1016_j_engappai_2022_104709
elsevier_sciencedirect_doi_10_1016_j_engappai_2022_104709
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mirjalili (b21) 2016; 27
Goldberg (b8) 1989
Lai, Bo, Ren, Fox (b17) 2011
QaisaHan, Hasanienb Saad Alghuwainem (b26) 2018; 69
Selim, Alsultan (b29) 1991; 24
Hasnat, Alata, Trémeau (b12) 2012; 6
Yalic, Can (b34) 2018; 4
Ekekrantz, Bore, Ambrus, Folkesson, Jensfelt (b6) 2017
Stutz, Hermans, Leibe (b32) 2018; 166
Sun, Wang, Wei (b33) 2018
Richtsfeld, Mörwald, Prankl, Zillich, Vincze (b28) 2012
Kennedy, Eberhart (b15) 1995
Kirkpatrick, Gelatt, Vecchi (b16) 1983; 220
Zawbaa, Emary, Grosan (b36) 2016; 11
Yoshida, H., Kawata, K., Fukuyama, Y., Nakanishi, Y., 1999. A particle swarm optimization for reactive power and voltage control considering voltage stability. In: Proc. Int. Conf. Intelligent System Application to Power Systems, Rio de Janeiro, Brazil. pp. 117–121.
Alomous, Alrosan, Norwawi, Alomari, Dheeb, Almomani, Alqahtani (b1) 2005; 96
Chen, Tang, Zou, Huang, Zhou, Chen (b3) 2021; 187
Hashim, Houssein, Kashif, Mabrouk, Al-Atabany (b10) 2019
Mittal, H., Saraswat, M., 2018b. cKGSA based fuzzy clustering method for image segmentation of RGB-D images. In: Proceedings of 2018 Eleventh International Conference on Contemporary Computing (IC3). pp. 1–6.
Silberman, Hoiem, Kohli, Fergus (b30) 2012
Li, Wu, Chang (b18) 2012
Nanda, Panda (b25) 2014; 16
Dal Mutto, Zanuttigh, Cortelazzo (b4) 2012; 6
Mittal, H., Pal, R., Kulhari, A., Saraswat, M., 2016. Chaotic kbest gravitational search algorithm (ckgsa). In: Proc. of IEEE International Conference on Contemporary Computing. pp. 1–6.
Ren, Bo, Fox (b27) 2012
Hashim, Houssein, Mabrouk, Al-Atabany, Mirjalili (b11) 2019
Mittal, Saraswat (b23) 2018; 71
Chen, Tang, Zou, Huang, Li, He (b2) 2019; 122
Gupta, Arbelaez, Malik (b9) 2013
Fang, Yu, Wu, Chen, Jia (b7) 2018
Hasnat, Alata, Tremeau (b13) 2016; 38
Memon, Unar, Memon (b20) 2015
Li, Zhang, Wang, Zhao, Han, Chen (b19) 2017
Deng, Todorovic, Latecki (b5) 2016
Holland (b14) 1975
Storn, Price (b31) 1997; 11
Alomous (10.1016/j.engappai.2022.104709_b1) 2005; 96
Stutz (10.1016/j.engappai.2022.104709_b32) 2018; 166
Yalic (10.1016/j.engappai.2022.104709_b34) 2018; 4
Mittal (10.1016/j.engappai.2022.104709_b23) 2018; 71
Storn (10.1016/j.engappai.2022.104709_b31) 1997; 11
Hashim (10.1016/j.engappai.2022.104709_b10) 2019
Hashim (10.1016/j.engappai.2022.104709_b11) 2019
Ren (10.1016/j.engappai.2022.104709_b27) 2012
Sun (10.1016/j.engappai.2022.104709_b33) 2018
Selim (10.1016/j.engappai.2022.104709_b29) 1991; 24
Deng (10.1016/j.engappai.2022.104709_b5) 2016
Gupta (10.1016/j.engappai.2022.104709_b9) 2013
Lai (10.1016/j.engappai.2022.104709_b17) 2011
Mirjalili (10.1016/j.engappai.2022.104709_b21) 2016; 27
QaisaHan (10.1016/j.engappai.2022.104709_b26) 2018; 69
Holland (10.1016/j.engappai.2022.104709_b14) 1975
Richtsfeld (10.1016/j.engappai.2022.104709_b28) 2012
10.1016/j.engappai.2022.104709_b35
Kirkpatrick (10.1016/j.engappai.2022.104709_b16) 1983; 220
Chen (10.1016/j.engappai.2022.104709_b3) 2021; 187
Goldberg (10.1016/j.engappai.2022.104709_b8) 1989
Hasnat (10.1016/j.engappai.2022.104709_b13) 2016; 38
Li (10.1016/j.engappai.2022.104709_b18) 2012
Kennedy (10.1016/j.engappai.2022.104709_b15) 1995
Ekekrantz (10.1016/j.engappai.2022.104709_b6) 2017
Chen (10.1016/j.engappai.2022.104709_b2) 2019; 122
Hasnat (10.1016/j.engappai.2022.104709_b12) 2012; 6
Memon (10.1016/j.engappai.2022.104709_b20) 2015
Silberman (10.1016/j.engappai.2022.104709_b30) 2012
10.1016/j.engappai.2022.104709_b22
Fang (10.1016/j.engappai.2022.104709_b7) 2018
Nanda (10.1016/j.engappai.2022.104709_b25) 2014; 16
Dal Mutto (10.1016/j.engappai.2022.104709_b4) 2012; 6
Zawbaa (10.1016/j.engappai.2022.104709_b36) 2016; 11
10.1016/j.engappai.2022.104709_b24
Li (10.1016/j.engappai.2022.104709_b19) 2017
References_xml – year: 2018
  ident: b7
  article-title: Superpixel segmentation using weighted coplanar feature clustering on RGBD images
  publication-title: Appl. Sci.
– start-page: 564
  year: 2013
  end-page: 571
  ident: b9
  article-title: Perceptual organization and recognition of indoor scenes from RGB-D images
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2018
  ident: b33
  article-title: An Improved Whale Optimization Algorithm Based on Different Searching Paths and Perceptual Disturbance, Vol. 10
– start-page: 789
  year: 2012
  end-page: 796
  ident: b18
  article-title: Segmentation using superpixels: A bipartite graph partitioning approach
  publication-title: Proc. of IEEE Conference on Computer Vision and Pattern Recognition
– reference: Yoshida, H., Kawata, K., Fukuyama, Y., Nakanishi, Y., 1999. A particle swarm optimization for reactive power and voltage control considering voltage stability. In: Proc. Int. Conf. Intelligent System Application to Power Systems, Rio de Janeiro, Brazil. pp. 117–121.
– reference: Mittal, H., Pal, R., Kulhari, A., Saraswat, M., 2016. Chaotic kbest gravitational search algorithm (ckgsa). In: Proc. of IEEE International Conference on Contemporary Computing. pp. 1–6.
– volume: 220
  start-page: 671
  year: 1983
  end-page: 680
  ident: b16
  article-title: Optimization by simulated annealing
  publication-title: Science
– start-page: 646
  year: 2019
  end-page: 667
  ident: b11
  article-title: Henry gas solubility optimization: A novel physics-based algorithm
  publication-title: Future Gener. Comput. Syst.
– start-page: 4791
  year: 2012
  end-page: 4796
  ident: b28
  article-title: Segmentation of unknown objects in indoor environments
  publication-title: Intelligent Robots and Systems (IROS)/RSJ International Conference
– volume: 24
  start-page: 1003
  year: 1991
  end-page: 1008
  ident: b29
  article-title: A simulated annealing algorithm for the clustering problem
  publication-title: Pattern Recognit.
– volume: 69
  start-page: 504
  year: 2018
  end-page: 515
  ident: b26
  article-title: Augmented grey wolf optimizer for grid-connected PMSG-based wind energy conversion systems
  publication-title: Appl. Soft Comput.
– start-page: 1941
  year: 1995
  end-page: 1948
  ident: b15
  article-title: PSO optimization
  publication-title: Proc. IEEE Int. Conf. Neural Net., Vol. 4
– start-page: 127
  year: 2016
  end-page: 136
  ident: b5
  article-title: Unsupervised object region proposals for RGB-D indoor scenes
  publication-title: Comput. Vis. Image Underst.
– start-page: 333
  year: 2017
  end-page: 339
  ident: b19
  article-title: Henry’s law and accumulation of weak source for crust-derived helium: A case study of weihe basin
  publication-title: J. Nat. Gas Geosci.
– start-page: 2759
  year: 2012
  end-page: 2766
  ident: b27
  article-title: RGB-D scene labeling: Features and algorithms
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2015
  ident: b20
  article-title: Image Quality Assessment for Performance Evaluation of Focus Measure Operators, Vol. 34
– start-page: 746
  year: 2012
  end-page: 760
  ident: b30
  article-title: Indoor segmentation and support inference from RGBD images
  publication-title: Computer Vision–ECCV-12
– volume: 38
  start-page: 2255
  year: 2016
  end-page: 2268
  ident: b13
  article-title: Joint color-spatial-directional clustering and region merging (jcsd-rm) for unsupervised RGB-D image segmentation
  publication-title: Pattern Anal. Mach. Intell.
– volume: 6
  start-page: 505
  year: 2012
  end-page: 521
  ident: b4
  article-title: Fusion of geometry and color information for scene segmentation
  publication-title: Signal Process.
– year: 1975
  ident: b14
  article-title: Adaptation in Natural and Artificial Systems
– volume: 166
  start-page: 1
  year: 2018
  end-page: 27
  ident: b32
  article-title: Superpixels: An evaluation of the state-of-the-art
  publication-title: Comput. Vis. Image Underst.
– volume: 27
  start-page: 1053
  year: 2016
  end-page: 1073
  ident: b21
  article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput. Appl.
– year: 1989
  ident: b8
  article-title: Genetic Algorithms in Search Optimization and Machine Learning
– volume: 96
  year: 2005
  ident: b1
  article-title: A survey: challenges of image segmentation
  publication-title: J. Theor. Appl. Inf. Technol.
– start-page: 1
  year: 2019
  end-page: 13
  ident: b10
  article-title: A modified henry gas solubility optimization for solving motif discovery problem
  publication-title: Neural Comput. Appl.
– year: 2017
  ident: b6
  article-title: Unsupervised object discovery and segmentation of RGB-D images
  publication-title: Comput. Vis. Pattern Recognit.
– volume: 122
  start-page: 170
  year: 2019
  end-page: 183
  ident: b2
  article-title: High-accuracy multi-camera reconstruction enhanced by adaptive point cloud correction algorithm
  publication-title: Opt. Lasers Eng.
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b31
  article-title: Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
– volume: 4
  start-page: 379
  year: 2018
  end-page: 386
  ident: b34
  article-title: Automatic object segmentation on RGB-D data using surface normals and region similarity
  publication-title: VISIGRAPP
– volume: 71
  start-page: 226
  year: 2018
  end-page: 235
  ident: b23
  article-title: An optimum multi-level image thresholding segmentation using non-local means 2D histogram and exponential kbest gravitational search algorithm
  publication-title: Eng. Appl. Artif. Intell.
– reference: Mittal, H., Saraswat, M., 2018b. cKGSA based fuzzy clustering method for image segmentation of RGB-D images. In: Proceedings of 2018 Eleventh International Conference on Contemporary Computing (IC3). pp. 1–6.
– volume: 11
  year: 2016
  ident: b36
  article-title: Feature selection via chaotic antlion optimization
  publication-title: PLoS One
– volume: 187
  start-page: 106
  year: 2021
  end-page: 237
  ident: b3
  article-title: 3D global mapping of large-scale unstructured orchard integrating eye-in-hand stereo vision and SLAM
  publication-title: Comput. Electron. Agric.
– volume: 6
  start-page: 505
  year: 2012
  end-page: 521
  ident: b12
  article-title: Unsupervised RGB-D image segmentation using joint clustering and region merging
  publication-title: J-STSP
– start-page: 1817
  year: 2011
  end-page: 1824
  ident: b17
  article-title: A large-scale hierarchical multi-view RGB-D object dataset
  publication-title: IEEE International Conference on Robotics and Automation (ICRA)
– volume: 16
  start-page: 1
  year: 2014
  end-page: 18
  ident: b25
  article-title: A survey on nature inspired metaheuristicalgorithms for partitional clustering
  publication-title: Swarm Evol. Comput.
– start-page: 2759
  year: 2012
  ident: 10.1016/j.engappai.2022.104709_b27
  article-title: RGB-D scene labeling: Features and algorithms
– volume: 166
  start-page: 1
  year: 2018
  ident: 10.1016/j.engappai.2022.104709_b32
  article-title: Superpixels: An evaluation of the state-of-the-art
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2017.03.007
– start-page: 127
  year: 2016
  ident: 10.1016/j.engappai.2022.104709_b5
  article-title: Unsupervised object region proposals for RGB-D indoor scenes
  publication-title: Comput. Vis. Image Underst.
– volume: 11
  start-page: 341
  year: 1997
  ident: 10.1016/j.engappai.2022.104709_b31
  article-title: Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– volume: 122
  start-page: 170
  year: 2019
  ident: 10.1016/j.engappai.2022.104709_b2
  article-title: High-accuracy multi-camera reconstruction enhanced by adaptive point cloud correction algorithm
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2019.06.011
– year: 1989
  ident: 10.1016/j.engappai.2022.104709_b8
– volume: 38
  start-page: 2255
  year: 2016
  ident: 10.1016/j.engappai.2022.104709_b13
  article-title: Joint color-spatial-directional clustering and region merging (jcsd-rm) for unsupervised RGB-D image segmentation
  publication-title: Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2513407
– volume: 96
  year: 2005
  ident: 10.1016/j.engappai.2022.104709_b1
  article-title: A survey: challenges of image segmentation
  publication-title: J. Theor. Appl. Inf. Technol.
– year: 2018
  ident: 10.1016/j.engappai.2022.104709_b7
  article-title: Superpixel segmentation using weighted coplanar feature clustering on RGBD images
  publication-title: Appl. Sci.
  doi: 10.3390/app8060902
– volume: 69
  start-page: 504
  year: 2018
  ident: 10.1016/j.engappai.2022.104709_b26
  article-title: Augmented grey wolf optimizer for grid-connected PMSG-based wind energy conversion systems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.05.006
– volume: 187
  start-page: 106
  year: 2021
  ident: 10.1016/j.engappai.2022.104709_b3
  article-title: 3D global mapping of large-scale unstructured orchard integrating eye-in-hand stereo vision and SLAM
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106237
– start-page: 789
  year: 2012
  ident: 10.1016/j.engappai.2022.104709_b18
  article-title: Segmentation using superpixels: A bipartite graph partitioning approach
– volume: 16
  start-page: 1
  year: 2014
  ident: 10.1016/j.engappai.2022.104709_b25
  article-title: A survey on nature inspired metaheuristicalgorithms for partitional clustering
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2013.11.003
– volume: 11
  year: 2016
  ident: 10.1016/j.engappai.2022.104709_b36
  article-title: Feature selection via chaotic antlion optimization
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0150652
– start-page: 564
  year: 2013
  ident: 10.1016/j.engappai.2022.104709_b9
  article-title: Perceptual organization and recognition of indoor scenes from RGB-D images
– start-page: 646
  year: 2019
  ident: 10.1016/j.engappai.2022.104709_b11
  article-title: Henry gas solubility optimization: A novel physics-based algorithm
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.07.015
– start-page: 1817
  year: 2011
  ident: 10.1016/j.engappai.2022.104709_b17
  article-title: A large-scale hierarchical multi-view RGB-D object dataset
– start-page: 1941
  year: 1995
  ident: 10.1016/j.engappai.2022.104709_b15
  article-title: PSO optimization
– volume: 6
  start-page: 505
  year: 2012
  ident: 10.1016/j.engappai.2022.104709_b12
  article-title: Unsupervised RGB-D image segmentation using joint clustering and region merging
  publication-title: J-STSP
– year: 1975
  ident: 10.1016/j.engappai.2022.104709_b14
– volume: 24
  start-page: 1003
  year: 1991
  ident: 10.1016/j.engappai.2022.104709_b29
  article-title: A simulated annealing algorithm for the clustering problem
  publication-title: Pattern Recognit.
  doi: 10.1016/0031-3203(91)90097-O
– volume: 6
  start-page: 505
  year: 2012
  ident: 10.1016/j.engappai.2022.104709_b4
  article-title: Fusion of geometry and color information for scene segmentation
  publication-title: Signal Process.
– year: 2018
  ident: 10.1016/j.engappai.2022.104709_b33
– start-page: 746
  year: 2012
  ident: 10.1016/j.engappai.2022.104709_b30
  article-title: Indoor segmentation and support inference from RGBD images
– ident: 10.1016/j.engappai.2022.104709_b24
  doi: 10.1109/IC3.2018.8530568
– start-page: 1
  year: 2019
  ident: 10.1016/j.engappai.2022.104709_b10
  article-title: A modified henry gas solubility optimization for solving motif discovery problem
  publication-title: Neural Comput. Appl.
– start-page: 4791
  year: 2012
  ident: 10.1016/j.engappai.2022.104709_b28
  article-title: Segmentation of unknown objects in indoor environments
– year: 2017
  ident: 10.1016/j.engappai.2022.104709_b6
  article-title: Unsupervised object discovery and segmentation of RGB-D images
  publication-title: Comput. Vis. Pattern Recognit.
– start-page: 333
  year: 2017
  ident: 10.1016/j.engappai.2022.104709_b19
  article-title: Henry’s law and accumulation of weak source for crust-derived helium: A case study of weihe basin
  publication-title: J. Nat. Gas Geosci.
  doi: 10.1016/j.jnggs.2018.02.001
– volume: 27
  start-page: 1053
  year: 2016
  ident: 10.1016/j.engappai.2022.104709_b21
  article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1920-1
– volume: 4
  start-page: 379
  year: 2018
  ident: 10.1016/j.engappai.2022.104709_b34
  article-title: Automatic object segmentation on RGB-D data using surface normals and region similarity
  publication-title: VISIGRAPP
– year: 2015
  ident: 10.1016/j.engappai.2022.104709_b20
– volume: 71
  start-page: 226
  year: 2018
  ident: 10.1016/j.engappai.2022.104709_b23
  article-title: An optimum multi-level image thresholding segmentation using non-local means 2D histogram and exponential kbest gravitational search algorithm
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.03.001
– volume: 220
  start-page: 671
  year: 1983
  ident: 10.1016/j.engappai.2022.104709_b16
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– ident: 10.1016/j.engappai.2022.104709_b22
  doi: 10.1109/IC3.2016.7880252
– ident: 10.1016/j.engappai.2022.104709_b35
SSID ssj0003846
Score 2.438795
Snippet Automatic image segmentation is a challenging task in computer vision applications, especially in the presence of occluded objects, varying color, and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104709
SubjectTerms Fuzzy clustering
Henry gas solubility optimization
Image segmentation
Meta-heuristic optimization algorithms
Title A novel fuzzy clustering based method for image segmentation in RGB-D images
URI https://dx.doi.org/10.1016/j.engappai.2022.104709
Volume 111
WOSCitedRecordID wos000797949300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZgyoELO6Js8oFblKGOncXHAcquCqEizS1yvLQp00w1nhlKfz3e4kmhovTAJYoc2UnmfXl-fvP5ewC8KAgSWd6gFHGVpSTnJKVm1rbENSasoHrJlCs2Ue7tVdMp_RK4qtqVEyi7rjo9pSf_1dSmzRjbbp29grnjoKbBnBujm6Mxuzn-k-EnSTdfy1miVmdnPxM-W1kpBJsQsBOWCCWjHbuwPbaEHS0PjsMGJMd6_PruVfrGX9Pn8vYb5cJk-Le3YxIsHOXIFQAZaHxGl8IEWwdfLpJPrT6cR06wTUnrH8yzRlbfpT4cJiLMGjbS_mJGMUsR9eVconMNrtS7R6sL4dQQ_vTcPolwNJbdgXkH1o7tLcabDuelsn-bwiKxsOesHdX9OLUdp_bjXAdbWZnTagS2Jh92px_jlI0rv6Orf4PBVvKLn-jiKGYQmezfAbfCkgJOPBTugmuyuwduh-UFDM5bm6a-gkffdh98nkAHFujAAjdggQ4s0IMFGrBABwg4BAtsO-jA4q_pB-Db29391-_TUF8j5Rhly7TMcI6FLIwbryQWzKwUiEASEdZkquAF4bnKRYmtql0jy5IRqSqGGllIogTbwQ_BqJt38hGAkkkkOFWyUIrkjDUcUcqwzLEJCbMdsg3y_veqeRCftzVQZvXfLbYNXsZ-J15-5dIetDdHHYJIHxzWBmmX9H185bs9ATc3n8JTMFouVvIZuMHXy1YvngeY_QJwR5gI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+fuzzy+clustering+based+method+for+image+segmentation+in+RGB-D+images&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Yadav%2C+Nand+Kishor&rft.au=Saraswat%2C+Mukesh&rft.date=2022-05-01&rft.issn=0952-1976&rft.volume=111&rft.spage=104709&rft_id=info:doi/10.1016%2Fj.engappai.2022.104709&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2022_104709
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon