Design and implementation of multi-level linkage mechanism bionic pectoral fin for manta ray robot
Manta rays achieve propulsion through the undulation of their pectoral fins, making them an important subject of study in bionics due to their efficient and agile swimming characteristics. However, currently, most biomimetic pectoral fins achieve a flapping pattern similar to that of biological fins...
Uložené v:
| Vydané v: | Ocean engineering Ročník 284; s. 115152 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
15.09.2023
|
| Predmet: | |
| ISSN: | 0029-8018, 1873-5258 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Manta rays achieve propulsion through the undulation of their pectoral fins, making them an important subject of study in bionics due to their efficient and agile swimming characteristics. However, currently, most biomimetic pectoral fins achieve a flapping pattern similar to that of biological fins by using multiple driving mechanisms. This paper designs an actively controlled bionic pectoral fin, driven by a single motor through a multi-level linkage mechanism, for a larger size and fully functional manta ray robot. Firstly, a bionic pectoral fin is designed based on a multi-level linkage mechanism driven by a single motor, and non-linear programming methods are innovatively applied to optimize the fin mechanism, making its motion profile more similar to the sinusoidal waveform of biological manta ray pectoral fins. Secondly, a dynamic model of the manta ray robot is established using dynamic mesh technology to verify the propulsion capability of the bionic pectoral fins and the robot's theoretical speed. Finally, prototypes of the manta ray robot are developed, and experimental research is conducted in a pool and lake. The experimental results show that the robot can complete straight-line swimming, buoyancy control, and turning in water, with a stable and flexible motion posture, proving the feasibility of this method.
•A manta ray robot driven by bionic pectoral fins composed of a multi-level linkage mechanism is proposed.•Simulation of large deformation of 3D pectoral fin model using dynamic mesh technology.•The pool test confirmed that the pectoral fin can effectively realize the underwater movement of the robot. |
|---|---|
| AbstractList | Manta rays achieve propulsion through the undulation of their pectoral fins, making them an important subject of study in bionics due to their efficient and agile swimming characteristics. However, currently, most biomimetic pectoral fins achieve a flapping pattern similar to that of biological fins by using multiple driving mechanisms. This paper designs an actively controlled bionic pectoral fin, driven by a single motor through a multi-level linkage mechanism, for a larger size and fully functional manta ray robot. Firstly, a bionic pectoral fin is designed based on a multi-level linkage mechanism driven by a single motor, and non-linear programming methods are innovatively applied to optimize the fin mechanism, making its motion profile more similar to the sinusoidal waveform of biological manta ray pectoral fins. Secondly, a dynamic model of the manta ray robot is established using dynamic mesh technology to verify the propulsion capability of the bionic pectoral fins and the robot's theoretical speed. Finally, prototypes of the manta ray robot are developed, and experimental research is conducted in a pool and lake. The experimental results show that the robot can complete straight-line swimming, buoyancy control, and turning in water, with a stable and flexible motion posture, proving the feasibility of this method.
•A manta ray robot driven by bionic pectoral fins composed of a multi-level linkage mechanism is proposed.•Simulation of large deformation of 3D pectoral fin model using dynamic mesh technology.•The pool test confirmed that the pectoral fin can effectively realize the underwater movement of the robot. |
| ArticleNumber | 115152 |
| Author | Sheng, Chaowu Huang, Haocai Sun, Qixuan Wu, Jiannan Wang, Zhanglin Hu, Sijie |
| Author_xml | – sequence: 1 givenname: Qixuan surname: Sun fullname: Sun, Qixuan organization: Zhejiang University, Zhejiang, China – sequence: 2 givenname: Jiannan surname: Wu fullname: Wu, Jiannan organization: Zhejiang University, Zhejiang, China – sequence: 3 givenname: Chaowu surname: Sheng fullname: Sheng, Chaowu organization: Zhejiang University, Zhejiang, China – sequence: 4 givenname: Sijie surname: Hu fullname: Hu, Sijie organization: Zhejiang University, Zhejiang, China – sequence: 5 givenname: Zhanglin orcidid: 0000-0003-0700-6774 surname: Wang fullname: Wang, Zhanglin organization: Zhejiang University, Zhejiang, China – sequence: 6 givenname: Haocai orcidid: 0000-0001-8096-0439 surname: Huang fullname: Huang, Haocai email: hchuang@zju.edu.cn organization: Shenzhen Research Institute, Dalian Maritime University, Shenzhen, China |
| BookMark | eNqFkMtKAzEUhoNUsK2-guQFpp4knRu4UOoVCm50HXI5qakzScmMhb69U0Y3bro6m_N98H8zMgkxICHXDBYMWHGzXUSDKmDYLDhwsWAsZzk_I1NWlSLLeV5NyBSA11kFrLogs67bAkBRgJgS_YCd3wSqgqW-3TXYYuhV72Og0dH2u-l91uAeG9r48KU2SFs0nyr4rqV6-PKG7tD0MamGOh-oi4m2alDQpA40RR37S3LuVNPh1e-dk4-nx_fVS7Z-e35d3a8zIxjvs6Wta1tUAkpR1rl2HPSy1jmUZakK1HXBQXCbo6uUYnltGTrLnQNWo3YFU2JObkevSbHrEjpp_DilT8o3koE89pJb-ddLHnvJsdeAF__wXfKtSofT4N0I4jBu7zHJzngMBq1PQxppoz-l-AGDyIzU |
| CitedBy_id | crossref_primary_10_3390_jmse12020292 crossref_primary_10_1063_5_0252269 crossref_primary_10_1016_j_oceaneng_2024_118700 crossref_primary_10_1109_LRA_2025_3531148 crossref_primary_10_1109_ACCESS_2025_3562081 crossref_primary_10_3390_jmse13061156 crossref_primary_10_1088_2631_8695_ade41d crossref_primary_10_1109_LRA_2025_3583504 crossref_primary_10_1007_s42235_025_00668_x crossref_primary_10_3390_biomimetics9030126 crossref_primary_10_1088_1748_3190_adf6f7 |
| Cites_doi | 10.1088/1748-3190/11/3/031001 10.3901/CJME.2013.02.257 10.1163/156855309X443124 10.1109/TMECH.2011.2175004 10.3390/jmse10070924 10.1016/j.oceaneng.2017.11.012 10.1109/LRA.2019.2895398 10.1109/48.757275 10.1007/s00348-007-0432-x 10.1016/S1546-5098(08)60163-6 10.1088/0964-1726/17/2/025039 10.1126/sciadv.1602045 10.3390/app11062556 10.1038/scientificamerican0784-72 10.1038/s41586-020-03153-z 10.1242/jeb.204.2.379 10.1108/IR-02-2019-0029 10.3390/jmse10070962 10.1016/j.oceaneng.2019.04.011 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.oceaneng.2023.115152 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Oceanography |
| EISSN | 1873-5258 |
| ExternalDocumentID | 10_1016_j_oceaneng_2023_115152 S0029801823015366 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SET WUQ ~HD |
| ID | FETCH-LOGICAL-c312t-4d99d683073795bf20b49b50777a6eb962032d5ef8aa159d1efd2ff019ebf61a3 |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001035273400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-8018 |
| IngestDate | Sat Nov 29 07:25:48 EST 2025 Tue Nov 18 20:44:24 EST 2025 Sat Feb 17 16:08:37 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Hydrodynamic analysis Underwater tests Manta ray robot Bionic pectoral fin Mechanism motion analysis |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-4d99d683073795bf20b49b50777a6eb962032d5ef8aa159d1efd2ff019ebf61a3 |
| ORCID | 0000-0001-8096-0439 0000-0003-0700-6774 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_oceaneng_2023_115152 crossref_primary_10_1016_j_oceaneng_2023_115152 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2023_115152 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-15 |
| PublicationDateYYYYMMDD | 2023-09-15 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Ocean engineering |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Liu, Chen, Wang, He, Chen, Li (bib12) 2022; 10 Mikuriya, Hikasa, Hamano (bib14) 2015 Zhang, Wang, Wang (bib23) 2018 Salazar, Fuentes, Abdelkefi (bib17) 2018; 148 Sfakiotakis, Lane, Davies (bib18) 1999; 24 Yang, Qiu, Han (bib22) 2009; 6 Suzuki, Kato, Suzumori (bib19) 2008; 44 Webb (bib21) 1984; 251 Kodaira, Asaka, Horiuchi, Endo, Nabae, Suzumori (bib6) 2019; 4 Wang, Hang, Wang (bib20) 2008; 17 Li, Li, Liang (bib8) 2017; 3 Sahoo, Dwivedy, Robi (bib16) 2019; 181 Lisa (bib11) 2001; 204 Chen, Um, Bart-Smith (bib4) 2011 Huang, Sheng, Wu (bib5) 2021; 108 Bianchi, Cinquemani, Resta (bib2) 2021; 11 Cao, Lu, Cai (bib3) 2019; 46 Li, Chen, Zhou (bib9) 2021; 591 Low, Zhou, Zhong (bib13) 2009; 23 Lindsey (bib10) 1978; 7 Raj, Thakur (bib15) 2016; 11 Zhang, Pan, Cao (bib24) 2022; 10 Li, Wang, Liu (bib7) 2013; 26 Zhou, Low (bib25) 2012; 17 Lisa (10.1016/j.oceaneng.2023.115152_bib11) 2001; 204 Bianchi (10.1016/j.oceaneng.2023.115152_bib2) 2021; 11 Chen (10.1016/j.oceaneng.2023.115152_bib4) 2011 Raj (10.1016/j.oceaneng.2023.115152_bib15) 2016; 11 Salazar (10.1016/j.oceaneng.2023.115152_bib17) 2018; 148 Suzuki (10.1016/j.oceaneng.2023.115152_bib19) 2008; 44 Lindsey (10.1016/j.oceaneng.2023.115152_bib10) 1978; 7 Kodaira (10.1016/j.oceaneng.2023.115152_bib6) 2019; 4 Zhang (10.1016/j.oceaneng.2023.115152_bib23) 2018 Zhou (10.1016/j.oceaneng.2023.115152_bib25) 2012; 17 Liu (10.1016/j.oceaneng.2023.115152_bib12) 2022; 10 Cao (10.1016/j.oceaneng.2023.115152_bib3) 2019; 46 Zhang (10.1016/j.oceaneng.2023.115152_bib24) 2022; 10 Li (10.1016/j.oceaneng.2023.115152_bib7) 2013; 26 Li (10.1016/j.oceaneng.2023.115152_bib8) 2017; 3 Yang (10.1016/j.oceaneng.2023.115152_bib22) 2009; 6 Huang (10.1016/j.oceaneng.2023.115152_bib5) 2021; 108 Webb (10.1016/j.oceaneng.2023.115152_bib21) 1984; 251 Wang (10.1016/j.oceaneng.2023.115152_bib20) 2008; 17 Sfakiotakis (10.1016/j.oceaneng.2023.115152_bib18) 1999; 24 Low (10.1016/j.oceaneng.2023.115152_bib13) 2009; 23 Mikuriya (10.1016/j.oceaneng.2023.115152_bib14) 2015 Li (10.1016/j.oceaneng.2023.115152_bib9) 2021; 591 Sahoo (10.1016/j.oceaneng.2023.115152_bib16) 2019; 181 |
| References_xml | – volume: 10 year: 2022 ident: bib12 article-title: A Manta Ray Robot with Soft Material Based Flapping Wing[J] publication-title: J. Mar. Sci. Eng. – volume: 6 start-page: 174 year: 2009 end-page: 179 ident: bib22 article-title: Kinematics Modeling and Experiments of Pectoral Oscillation Propulsion Robotic Fish[J] publication-title: JBE – volume: 46 start-page: 779 year: 2019 end-page: 791 ident: bib3 article-title: CPG-fuzzy-based control of a cownose-ray-like fish robot[J] publication-title: Ind. Robot: Int. J. Robot. Res. Appl. – volume: 17 start-page: 25 year: 2012 end-page: 35 ident: bib25 article-title: Design and Locomotion Control of a Biomimetic Underwater Vehicle with Fin Propulsion[J] publication-title: IEEE ASME Trans. Mechatron. – volume: 11 start-page: 2556 year: 2021 ident: bib2 article-title: Bio-inspired design of an underwater robot exploiting fin undulation propulsion[J] publication-title: Appl. Sci. – volume: 251 start-page: 72 year: 1984 end-page: 82 ident: bib21 article-title: Form and Function in Fish Swimming[J] publication-title: Sci. Am. – volume: 181 start-page: 145 year: 2019 end-page: 160 ident: bib16 article-title: Advancements in the field of autonomous underwater vehicle[J] publication-title: Ocean Eng. – volume: 44 start-page: 759 year: 2008 end-page: 771 ident: bib19 article-title: Load characteristics of mechanical pectoral fin[J] publication-title: Exp. Fluid – volume: 591 start-page: 66 year: 2021 end-page: 71 ident: bib9 article-title: Self-powered soft robot in the Mariana Trench[J] publication-title: Nature – volume: 204 start-page: 379 year: 2001 end-page: 394 ident: bib11 article-title: Rosenberger. Pectoral Fin Locomotion in Batoid Fishes: Undulation Versus Oscillation[J] publication-title: J. Exp. Biol. – volume: 26 start-page: 257 year: 2013 end-page: 263 ident: bib7 article-title: Applicability and generality of the modified grubler-kutzbach criterion[J] publication-title: Chin. J. Mech. Eng. – volume: 4 start-page: 1335 year: 2019 end-page: 1342 ident: bib6 article-title: IPMC monolithic thin film robots fabricated through a multi-layer casting process[J] publication-title: IEEE Rob. Autom. Lett. – volume: 11 year: 2016 ident: bib15 article-title: Fish-inspired robots: design, sensing, actuation, and autonomy - a review of research[J] publication-title: Bioinspiration Biomimetics – volume: 108 year: 2021 ident: bib5 article-title: Hydrodynamic analysis and motion simulation of fin and propeller driven manta ray robot[J] publication-title: Appl. Ocean Res. – volume: 3 year: 2017 ident: bib8 article-title: Fast-moving soft electronic fish[J] publication-title: Sci. Adv. – volume: 24 start-page: 237 year: 1999 end-page: 252 ident: bib18 article-title: Review of fish swimming modes for aquatic locomotion[J] publication-title: IEEE J. Ocean. Eng. – volume: 17 start-page: 25 year: 2008 end-page: 39 ident: bib20 article-title: Embedded SMA wire actuated biomimetic fin: a module for biomimetic underwater propulsion[J] publication-title: Smart Mater. Struct. – volume: 148 start-page: 75 year: 2018 end-page: 114 ident: bib17 article-title: Classification of biological and bioinspired aquatic systems: A review[J] publication-title: Ocean Eng. – year: 2018 ident: bib23 article-title: Design and Control of Bionic Manta Ray Robot With Flexible Pectoral Fin[C] publication-title: IEEE International Conference on Control and Automation – start-page: 1132 year: 2015 end-page: 1135 ident: bib14 article-title: Notice of Removal Development of a New Manta Robot Considering the Form drag[C]. 2015 54th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE) – volume: 10 start-page: 924 year: 2022 ident: bib24 article-title: A novel integrated gliding and flapping propulsion biomimetic manta-ray robot[J] publication-title: J. Mar. Sci. Eng. – volume: 7 start-page: 1 year: 1978 end-page: 100 ident: bib10 article-title: 1 Form, Function, and Locomotory Habits in Fish[J] publication-title: Fish Physiol. – volume: 23 start-page: 805 year: 2009 end-page: 829 ident: bib13 article-title: Gait Planning for Steady Swimming Control of Biomimetic Fish Robots[J] publication-title: Adv. Robot. – year: 2011 ident: bib4 article-title: Ionic polymer-metal composite enabled robotic manta ray[C] publication-title: SPIE Conference on Electroactive Polymer Actuators and Devices – volume: 11 issue: 3 year: 2016 ident: 10.1016/j.oceaneng.2023.115152_bib15 article-title: Fish-inspired robots: design, sensing, actuation, and autonomy - a review of research[J] publication-title: Bioinspiration Biomimetics doi: 10.1088/1748-3190/11/3/031001 – volume: 108 issue: 2 year: 2021 ident: 10.1016/j.oceaneng.2023.115152_bib5 article-title: Hydrodynamic analysis and motion simulation of fin and propeller driven manta ray robot[J] publication-title: Appl. Ocean Res. – volume: 26 start-page: 257 issue: 2 year: 2013 ident: 10.1016/j.oceaneng.2023.115152_bib7 article-title: Applicability and generality of the modified grubler-kutzbach criterion[J] publication-title: Chin. J. Mech. Eng. doi: 10.3901/CJME.2013.02.257 – year: 2018 ident: 10.1016/j.oceaneng.2023.115152_bib23 article-title: Design and Control of Bionic Manta Ray Robot With Flexible Pectoral Fin[C] – volume: 23 start-page: 805 issue: 7–8 year: 2009 ident: 10.1016/j.oceaneng.2023.115152_bib13 article-title: Gait Planning for Steady Swimming Control of Biomimetic Fish Robots[J] publication-title: Adv. Robot. doi: 10.1163/156855309X443124 – volume: 6 start-page: 174 issue: 2 year: 2009 ident: 10.1016/j.oceaneng.2023.115152_bib22 article-title: Kinematics Modeling and Experiments of Pectoral Oscillation Propulsion Robotic Fish[J] publication-title: JBE – volume: 17 start-page: 25 issue: 1 year: 2012 ident: 10.1016/j.oceaneng.2023.115152_bib25 article-title: Design and Locomotion Control of a Biomimetic Underwater Vehicle with Fin Propulsion[J] publication-title: IEEE ASME Trans. Mechatron. doi: 10.1109/TMECH.2011.2175004 – volume: 10 start-page: 924 issue: 7 year: 2022 ident: 10.1016/j.oceaneng.2023.115152_bib24 article-title: A novel integrated gliding and flapping propulsion biomimetic manta-ray robot[J] publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse10070924 – volume: 148 start-page: 75 issue: JAN.15 year: 2018 ident: 10.1016/j.oceaneng.2023.115152_bib17 article-title: Classification of biological and bioinspired aquatic systems: A review[J] publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2017.11.012 – volume: 4 start-page: 1335 year: 2019 ident: 10.1016/j.oceaneng.2023.115152_bib6 article-title: IPMC monolithic thin film robots fabricated through a multi-layer casting process[J] publication-title: IEEE Rob. Autom. Lett. doi: 10.1109/LRA.2019.2895398 – volume: 24 start-page: 237 issue: 2 year: 1999 ident: 10.1016/j.oceaneng.2023.115152_bib18 article-title: Review of fish swimming modes for aquatic locomotion[J] publication-title: IEEE J. Ocean. Eng. doi: 10.1109/48.757275 – start-page: 1132 year: 2015 ident: 10.1016/j.oceaneng.2023.115152_bib14 – volume: 44 start-page: 759 issue: 5 year: 2008 ident: 10.1016/j.oceaneng.2023.115152_bib19 article-title: Load characteristics of mechanical pectoral fin[J] publication-title: Exp. Fluid doi: 10.1007/s00348-007-0432-x – volume: 7 start-page: 1 year: 1978 ident: 10.1016/j.oceaneng.2023.115152_bib10 article-title: 1 Form, Function, and Locomotory Habits in Fish[J] publication-title: Fish Physiol. doi: 10.1016/S1546-5098(08)60163-6 – volume: 17 start-page: 25 issue: 2 year: 2008 ident: 10.1016/j.oceaneng.2023.115152_bib20 article-title: Embedded SMA wire actuated biomimetic fin: a module for biomimetic underwater propulsion[J] publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/17/2/025039 – volume: 3 issue: 4 year: 2017 ident: 10.1016/j.oceaneng.2023.115152_bib8 article-title: Fast-moving soft electronic fish[J] publication-title: Sci. Adv. doi: 10.1126/sciadv.1602045 – volume: 11 start-page: 2556 issue: 6 year: 2021 ident: 10.1016/j.oceaneng.2023.115152_bib2 article-title: Bio-inspired design of an underwater robot exploiting fin undulation propulsion[J] publication-title: Appl. Sci. doi: 10.3390/app11062556 – volume: 251 start-page: 72 issue: 1 year: 1984 ident: 10.1016/j.oceaneng.2023.115152_bib21 article-title: Form and Function in Fish Swimming[J] publication-title: Sci. Am. doi: 10.1038/scientificamerican0784-72 – year: 2011 ident: 10.1016/j.oceaneng.2023.115152_bib4 article-title: Ionic polymer-metal composite enabled robotic manta ray[C] – volume: 591 start-page: 66 issue: 7848 year: 2021 ident: 10.1016/j.oceaneng.2023.115152_bib9 article-title: Self-powered soft robot in the Mariana Trench[J] publication-title: Nature doi: 10.1038/s41586-020-03153-z – volume: 204 start-page: 379 year: 2001 ident: 10.1016/j.oceaneng.2023.115152_bib11 article-title: Rosenberger. Pectoral Fin Locomotion in Batoid Fishes: Undulation Versus Oscillation[J] publication-title: J. Exp. Biol. doi: 10.1242/jeb.204.2.379 – volume: 46 start-page: 779 issue: 6 year: 2019 ident: 10.1016/j.oceaneng.2023.115152_bib3 article-title: CPG-fuzzy-based control of a cownose-ray-like fish robot[J] publication-title: Ind. Robot: Int. J. Robot. Res. Appl. doi: 10.1108/IR-02-2019-0029 – volume: 10 issue: 7 year: 2022 ident: 10.1016/j.oceaneng.2023.115152_bib12 article-title: A Manta Ray Robot with Soft Material Based Flapping Wing[J] publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse10070962 – volume: 181 start-page: 145 year: 2019 ident: 10.1016/j.oceaneng.2023.115152_bib16 article-title: Advancements in the field of autonomous underwater vehicle[J] publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.04.011 |
| SSID | ssj0006603 |
| Score | 2.4847383 |
| Snippet | Manta rays achieve propulsion through the undulation of their pectoral fins, making them an important subject of study in bionics due to their efficient and... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 115152 |
| SubjectTerms | Bionic pectoral fin Hydrodynamic analysis Manta ray robot Mechanism motion analysis Underwater tests |
| Title | Design and implementation of multi-level linkage mechanism bionic pectoral fin for manta ray robot |
| URI | https://dx.doi.org/10.1016/j.oceaneng.2023.115152 |
| Volume | 284 |
| WOSCitedRecordID | wos001035273400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5258 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006603 issn: 0029-8018 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZCywEqISggWh7ygVu0Iet92ceqFAFCBUQRua3sXVvdKNmNQtKGf8-Mva-giNIDl1Vkyd7HfJkZj7-ZIeS1yjUYulh6ETj4HrY09mQotGePYbifMZHZkvmfkvNzPpmIL4PBdZMLczVLypJvNmLxX0UNYyBsTJ29hbjbRWEAfoPQ4Qpih-s_Cf6t5WS4Q4F5ww5v_ELLH_RmyBQa4tktMnbmGrN_sVmGKmw_nIWN5GNmY-FoiHP4_HK4lL-Gy0pVW9H8zxmG8nVX1bA7ZbL67GuxWXcA_LG2qAFIlt3gt0vtFM7ppayu1x3QbGS2mBa6H5pgAfIoXHJmmyog0ATyvrplPOwpTB8dKrZTl7uwwnRU4YvAg4zwFqNuwnbx7D-MWks1bFhs07RZJ8V1UrfOHbLPkkiAOtw_-XA2-dga8TgeBw07CN-gl1y--4l2-zU9X-XiIXlQbzLoiQPHIzLQ5SG53ys9eUgOrODqeuWPiXKooYAauo0aWhnaQw2tUUNb1FCHGtqghgJqKKCGWtRQQA21qHlCvr87uzh979XtN7ws8NnKC3Mh8pijEUhEpAwbq1Ao2D8kiYy1EjEbByyPtOFSglOc-9rkzBjYM2hlYl8GT8leWZX6GaFGK65AJQhjolBwzX3jhzIOM9_XuIM9IlHz8dKsrk2PLVJm6d_Fd0TetPMWrjrLjTNEI5u09jGd75gC7G6Ye3zruz0n97r_xQuyt1qu9UtyN7taFT-Xr2rM_QYJ5KHg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+implementation+of+multi-level+linkage+mechanism+bionic+pectoral+fin+for+manta+ray+robot&rft.jtitle=Ocean+engineering&rft.au=Sun%2C+Qixuan&rft.au=Wu%2C+Jiannan&rft.au=Sheng%2C+Chaowu&rft.au=Hu%2C+Sijie&rft.date=2023-09-15&rft.issn=0029-8018&rft.volume=284&rft.spage=115152&rft_id=info:doi/10.1016%2Fj.oceaneng.2023.115152&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oceaneng_2023_115152 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |