Design and implementation of multi-level linkage mechanism bionic pectoral fin for manta ray robot

Manta rays achieve propulsion through the undulation of their pectoral fins, making them an important subject of study in bionics due to their efficient and agile swimming characteristics. However, currently, most biomimetic pectoral fins achieve a flapping pattern similar to that of biological fins...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Ocean engineering Ročník 284; s. 115152
Hlavní autori: Sun, Qixuan, Wu, Jiannan, Sheng, Chaowu, Hu, Sijie, Wang, Zhanglin, Huang, Haocai
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 15.09.2023
Predmet:
ISSN:0029-8018, 1873-5258
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Manta rays achieve propulsion through the undulation of their pectoral fins, making them an important subject of study in bionics due to their efficient and agile swimming characteristics. However, currently, most biomimetic pectoral fins achieve a flapping pattern similar to that of biological fins by using multiple driving mechanisms. This paper designs an actively controlled bionic pectoral fin, driven by a single motor through a multi-level linkage mechanism, for a larger size and fully functional manta ray robot. Firstly, a bionic pectoral fin is designed based on a multi-level linkage mechanism driven by a single motor, and non-linear programming methods are innovatively applied to optimize the fin mechanism, making its motion profile more similar to the sinusoidal waveform of biological manta ray pectoral fins. Secondly, a dynamic model of the manta ray robot is established using dynamic mesh technology to verify the propulsion capability of the bionic pectoral fins and the robot's theoretical speed. Finally, prototypes of the manta ray robot are developed, and experimental research is conducted in a pool and lake. The experimental results show that the robot can complete straight-line swimming, buoyancy control, and turning in water, with a stable and flexible motion posture, proving the feasibility of this method. •A manta ray robot driven by bionic pectoral fins composed of a multi-level linkage mechanism is proposed.•Simulation of large deformation of 3D pectoral fin model using dynamic mesh technology.•The pool test confirmed that the pectoral fin can effectively realize the underwater movement of the robot.
AbstractList Manta rays achieve propulsion through the undulation of their pectoral fins, making them an important subject of study in bionics due to their efficient and agile swimming characteristics. However, currently, most biomimetic pectoral fins achieve a flapping pattern similar to that of biological fins by using multiple driving mechanisms. This paper designs an actively controlled bionic pectoral fin, driven by a single motor through a multi-level linkage mechanism, for a larger size and fully functional manta ray robot. Firstly, a bionic pectoral fin is designed based on a multi-level linkage mechanism driven by a single motor, and non-linear programming methods are innovatively applied to optimize the fin mechanism, making its motion profile more similar to the sinusoidal waveform of biological manta ray pectoral fins. Secondly, a dynamic model of the manta ray robot is established using dynamic mesh technology to verify the propulsion capability of the bionic pectoral fins and the robot's theoretical speed. Finally, prototypes of the manta ray robot are developed, and experimental research is conducted in a pool and lake. The experimental results show that the robot can complete straight-line swimming, buoyancy control, and turning in water, with a stable and flexible motion posture, proving the feasibility of this method. •A manta ray robot driven by bionic pectoral fins composed of a multi-level linkage mechanism is proposed.•Simulation of large deformation of 3D pectoral fin model using dynamic mesh technology.•The pool test confirmed that the pectoral fin can effectively realize the underwater movement of the robot.
ArticleNumber 115152
Author Sheng, Chaowu
Huang, Haocai
Sun, Qixuan
Wu, Jiannan
Wang, Zhanglin
Hu, Sijie
Author_xml – sequence: 1
  givenname: Qixuan
  surname: Sun
  fullname: Sun, Qixuan
  organization: Zhejiang University, Zhejiang, China
– sequence: 2
  givenname: Jiannan
  surname: Wu
  fullname: Wu, Jiannan
  organization: Zhejiang University, Zhejiang, China
– sequence: 3
  givenname: Chaowu
  surname: Sheng
  fullname: Sheng, Chaowu
  organization: Zhejiang University, Zhejiang, China
– sequence: 4
  givenname: Sijie
  surname: Hu
  fullname: Hu, Sijie
  organization: Zhejiang University, Zhejiang, China
– sequence: 5
  givenname: Zhanglin
  orcidid: 0000-0003-0700-6774
  surname: Wang
  fullname: Wang, Zhanglin
  organization: Zhejiang University, Zhejiang, China
– sequence: 6
  givenname: Haocai
  orcidid: 0000-0001-8096-0439
  surname: Huang
  fullname: Huang, Haocai
  email: hchuang@zju.edu.cn
  organization: Shenzhen Research Institute, Dalian Maritime University, Shenzhen, China
BookMark eNqFkMtKAzEUhoNUsK2-guQFpp4knRu4UOoVCm50HXI5qakzScmMhb69U0Y3bro6m_N98H8zMgkxICHXDBYMWHGzXUSDKmDYLDhwsWAsZzk_I1NWlSLLeV5NyBSA11kFrLogs67bAkBRgJgS_YCd3wSqgqW-3TXYYuhV72Og0dH2u-l91uAeG9r48KU2SFs0nyr4rqV6-PKG7tD0MamGOh-oi4m2alDQpA40RR37S3LuVNPh1e-dk4-nx_fVS7Z-e35d3a8zIxjvs6Wta1tUAkpR1rl2HPSy1jmUZakK1HXBQXCbo6uUYnltGTrLnQNWo3YFU2JObkevSbHrEjpp_DilT8o3koE89pJb-ddLHnvJsdeAF__wXfKtSofT4N0I4jBu7zHJzngMBq1PQxppoz-l-AGDyIzU
CitedBy_id crossref_primary_10_3390_jmse12020292
crossref_primary_10_1063_5_0252269
crossref_primary_10_1016_j_oceaneng_2024_118700
crossref_primary_10_1109_LRA_2025_3531148
crossref_primary_10_1109_ACCESS_2025_3562081
crossref_primary_10_3390_jmse13061156
crossref_primary_10_1088_2631_8695_ade41d
crossref_primary_10_1109_LRA_2025_3583504
crossref_primary_10_1007_s42235_025_00668_x
crossref_primary_10_3390_biomimetics9030126
crossref_primary_10_1088_1748_3190_adf6f7
Cites_doi 10.1088/1748-3190/11/3/031001
10.3901/CJME.2013.02.257
10.1163/156855309X443124
10.1109/TMECH.2011.2175004
10.3390/jmse10070924
10.1016/j.oceaneng.2017.11.012
10.1109/LRA.2019.2895398
10.1109/48.757275
10.1007/s00348-007-0432-x
10.1016/S1546-5098(08)60163-6
10.1088/0964-1726/17/2/025039
10.1126/sciadv.1602045
10.3390/app11062556
10.1038/scientificamerican0784-72
10.1038/s41586-020-03153-z
10.1242/jeb.204.2.379
10.1108/IR-02-2019-0029
10.3390/jmse10070962
10.1016/j.oceaneng.2019.04.011
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.oceaneng.2023.115152
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
EISSN 1873-5258
ExternalDocumentID 10_1016_j_oceaneng_2023_115152
S0029801823015366
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSJ
SST
SSZ
T5K
TAE
TN5
XPP
ZMT
~02
~G-
29N
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SET
WUQ
~HD
ID FETCH-LOGICAL-c312t-4d99d683073795bf20b49b50777a6eb962032d5ef8aa159d1efd2ff019ebf61a3
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001035273400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-8018
IngestDate Sat Nov 29 07:25:48 EST 2025
Tue Nov 18 20:44:24 EST 2025
Sat Feb 17 16:08:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hydrodynamic analysis
Underwater tests
Manta ray robot
Bionic pectoral fin
Mechanism motion analysis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-4d99d683073795bf20b49b50777a6eb962032d5ef8aa159d1efd2ff019ebf61a3
ORCID 0000-0001-8096-0439
0000-0003-0700-6774
ParticipantIDs crossref_citationtrail_10_1016_j_oceaneng_2023_115152
crossref_primary_10_1016_j_oceaneng_2023_115152
elsevier_sciencedirect_doi_10_1016_j_oceaneng_2023_115152
PublicationCentury 2000
PublicationDate 2023-09-15
PublicationDateYYYYMMDD 2023-09-15
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-15
  day: 15
PublicationDecade 2020
PublicationTitle Ocean engineering
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Chen, Wang, He, Chen, Li (bib12) 2022; 10
Mikuriya, Hikasa, Hamano (bib14) 2015
Zhang, Wang, Wang (bib23) 2018
Salazar, Fuentes, Abdelkefi (bib17) 2018; 148
Sfakiotakis, Lane, Davies (bib18) 1999; 24
Yang, Qiu, Han (bib22) 2009; 6
Suzuki, Kato, Suzumori (bib19) 2008; 44
Webb (bib21) 1984; 251
Kodaira, Asaka, Horiuchi, Endo, Nabae, Suzumori (bib6) 2019; 4
Wang, Hang, Wang (bib20) 2008; 17
Li, Li, Liang (bib8) 2017; 3
Sahoo, Dwivedy, Robi (bib16) 2019; 181
Lisa (bib11) 2001; 204
Chen, Um, Bart-Smith (bib4) 2011
Huang, Sheng, Wu (bib5) 2021; 108
Bianchi, Cinquemani, Resta (bib2) 2021; 11
Cao, Lu, Cai (bib3) 2019; 46
Li, Chen, Zhou (bib9) 2021; 591
Low, Zhou, Zhong (bib13) 2009; 23
Lindsey (bib10) 1978; 7
Raj, Thakur (bib15) 2016; 11
Zhang, Pan, Cao (bib24) 2022; 10
Li, Wang, Liu (bib7) 2013; 26
Zhou, Low (bib25) 2012; 17
Lisa (10.1016/j.oceaneng.2023.115152_bib11) 2001; 204
Bianchi (10.1016/j.oceaneng.2023.115152_bib2) 2021; 11
Chen (10.1016/j.oceaneng.2023.115152_bib4) 2011
Raj (10.1016/j.oceaneng.2023.115152_bib15) 2016; 11
Salazar (10.1016/j.oceaneng.2023.115152_bib17) 2018; 148
Suzuki (10.1016/j.oceaneng.2023.115152_bib19) 2008; 44
Lindsey (10.1016/j.oceaneng.2023.115152_bib10) 1978; 7
Kodaira (10.1016/j.oceaneng.2023.115152_bib6) 2019; 4
Zhang (10.1016/j.oceaneng.2023.115152_bib23) 2018
Zhou (10.1016/j.oceaneng.2023.115152_bib25) 2012; 17
Liu (10.1016/j.oceaneng.2023.115152_bib12) 2022; 10
Cao (10.1016/j.oceaneng.2023.115152_bib3) 2019; 46
Zhang (10.1016/j.oceaneng.2023.115152_bib24) 2022; 10
Li (10.1016/j.oceaneng.2023.115152_bib7) 2013; 26
Li (10.1016/j.oceaneng.2023.115152_bib8) 2017; 3
Yang (10.1016/j.oceaneng.2023.115152_bib22) 2009; 6
Huang (10.1016/j.oceaneng.2023.115152_bib5) 2021; 108
Webb (10.1016/j.oceaneng.2023.115152_bib21) 1984; 251
Wang (10.1016/j.oceaneng.2023.115152_bib20) 2008; 17
Sfakiotakis (10.1016/j.oceaneng.2023.115152_bib18) 1999; 24
Low (10.1016/j.oceaneng.2023.115152_bib13) 2009; 23
Mikuriya (10.1016/j.oceaneng.2023.115152_bib14) 2015
Li (10.1016/j.oceaneng.2023.115152_bib9) 2021; 591
Sahoo (10.1016/j.oceaneng.2023.115152_bib16) 2019; 181
References_xml – volume: 10
  year: 2022
  ident: bib12
  article-title: A Manta Ray Robot with Soft Material Based Flapping Wing[J]
  publication-title: J. Mar. Sci. Eng.
– volume: 6
  start-page: 174
  year: 2009
  end-page: 179
  ident: bib22
  article-title: Kinematics Modeling and Experiments of Pectoral Oscillation Propulsion Robotic Fish[J]
  publication-title: JBE
– volume: 46
  start-page: 779
  year: 2019
  end-page: 791
  ident: bib3
  article-title: CPG-fuzzy-based control of a cownose-ray-like fish robot[J]
  publication-title: Ind. Robot: Int. J. Robot. Res. Appl.
– volume: 17
  start-page: 25
  year: 2012
  end-page: 35
  ident: bib25
  article-title: Design and Locomotion Control of a Biomimetic Underwater Vehicle with Fin Propulsion[J]
  publication-title: IEEE ASME Trans. Mechatron.
– volume: 11
  start-page: 2556
  year: 2021
  ident: bib2
  article-title: Bio-inspired design of an underwater robot exploiting fin undulation propulsion[J]
  publication-title: Appl. Sci.
– volume: 251
  start-page: 72
  year: 1984
  end-page: 82
  ident: bib21
  article-title: Form and Function in Fish Swimming[J]
  publication-title: Sci. Am.
– volume: 181
  start-page: 145
  year: 2019
  end-page: 160
  ident: bib16
  article-title: Advancements in the field of autonomous underwater vehicle[J]
  publication-title: Ocean Eng.
– volume: 44
  start-page: 759
  year: 2008
  end-page: 771
  ident: bib19
  article-title: Load characteristics of mechanical pectoral fin[J]
  publication-title: Exp. Fluid
– volume: 591
  start-page: 66
  year: 2021
  end-page: 71
  ident: bib9
  article-title: Self-powered soft robot in the Mariana Trench[J]
  publication-title: Nature
– volume: 204
  start-page: 379
  year: 2001
  end-page: 394
  ident: bib11
  article-title: Rosenberger. Pectoral Fin Locomotion in Batoid Fishes: Undulation Versus Oscillation[J]
  publication-title: J. Exp. Biol.
– volume: 26
  start-page: 257
  year: 2013
  end-page: 263
  ident: bib7
  article-title: Applicability and generality of the modified grubler-kutzbach criterion[J]
  publication-title: Chin. J. Mech. Eng.
– volume: 4
  start-page: 1335
  year: 2019
  end-page: 1342
  ident: bib6
  article-title: IPMC monolithic thin film robots fabricated through a multi-layer casting process[J]
  publication-title: IEEE Rob. Autom. Lett.
– volume: 11
  year: 2016
  ident: bib15
  article-title: Fish-inspired robots: design, sensing, actuation, and autonomy - a review of research[J]
  publication-title: Bioinspiration Biomimetics
– volume: 108
  year: 2021
  ident: bib5
  article-title: Hydrodynamic analysis and motion simulation of fin and propeller driven manta ray robot[J]
  publication-title: Appl. Ocean Res.
– volume: 3
  year: 2017
  ident: bib8
  article-title: Fast-moving soft electronic fish[J]
  publication-title: Sci. Adv.
– volume: 24
  start-page: 237
  year: 1999
  end-page: 252
  ident: bib18
  article-title: Review of fish swimming modes for aquatic locomotion[J]
  publication-title: IEEE J. Ocean. Eng.
– volume: 17
  start-page: 25
  year: 2008
  end-page: 39
  ident: bib20
  article-title: Embedded SMA wire actuated biomimetic fin: a module for biomimetic underwater propulsion[J]
  publication-title: Smart Mater. Struct.
– volume: 148
  start-page: 75
  year: 2018
  end-page: 114
  ident: bib17
  article-title: Classification of biological and bioinspired aquatic systems: A review[J]
  publication-title: Ocean Eng.
– year: 2018
  ident: bib23
  article-title: Design and Control of Bionic Manta Ray Robot With Flexible Pectoral Fin[C]
  publication-title: IEEE International Conference on Control and Automation
– start-page: 1132
  year: 2015
  end-page: 1135
  ident: bib14
  article-title: Notice of Removal Development of a New Manta Robot Considering the Form drag[C]. 2015 54th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE)
– volume: 10
  start-page: 924
  year: 2022
  ident: bib24
  article-title: A novel integrated gliding and flapping propulsion biomimetic manta-ray robot[J]
  publication-title: J. Mar. Sci. Eng.
– volume: 7
  start-page: 1
  year: 1978
  end-page: 100
  ident: bib10
  article-title: 1 Form, Function, and Locomotory Habits in Fish[J]
  publication-title: Fish Physiol.
– volume: 23
  start-page: 805
  year: 2009
  end-page: 829
  ident: bib13
  article-title: Gait Planning for Steady Swimming Control of Biomimetic Fish Robots[J]
  publication-title: Adv. Robot.
– year: 2011
  ident: bib4
  article-title: Ionic polymer-metal composite enabled robotic manta ray[C]
  publication-title: SPIE Conference on Electroactive Polymer Actuators and Devices
– volume: 11
  issue: 3
  year: 2016
  ident: 10.1016/j.oceaneng.2023.115152_bib15
  article-title: Fish-inspired robots: design, sensing, actuation, and autonomy - a review of research[J]
  publication-title: Bioinspiration Biomimetics
  doi: 10.1088/1748-3190/11/3/031001
– volume: 108
  issue: 2
  year: 2021
  ident: 10.1016/j.oceaneng.2023.115152_bib5
  article-title: Hydrodynamic analysis and motion simulation of fin and propeller driven manta ray robot[J]
  publication-title: Appl. Ocean Res.
– volume: 26
  start-page: 257
  issue: 2
  year: 2013
  ident: 10.1016/j.oceaneng.2023.115152_bib7
  article-title: Applicability and generality of the modified grubler-kutzbach criterion[J]
  publication-title: Chin. J. Mech. Eng.
  doi: 10.3901/CJME.2013.02.257
– year: 2018
  ident: 10.1016/j.oceaneng.2023.115152_bib23
  article-title: Design and Control of Bionic Manta Ray Robot With Flexible Pectoral Fin[C]
– volume: 23
  start-page: 805
  issue: 7–8
  year: 2009
  ident: 10.1016/j.oceaneng.2023.115152_bib13
  article-title: Gait Planning for Steady Swimming Control of Biomimetic Fish Robots[J]
  publication-title: Adv. Robot.
  doi: 10.1163/156855309X443124
– volume: 6
  start-page: 174
  issue: 2
  year: 2009
  ident: 10.1016/j.oceaneng.2023.115152_bib22
  article-title: Kinematics Modeling and Experiments of Pectoral Oscillation Propulsion Robotic Fish[J]
  publication-title: JBE
– volume: 17
  start-page: 25
  issue: 1
  year: 2012
  ident: 10.1016/j.oceaneng.2023.115152_bib25
  article-title: Design and Locomotion Control of a Biomimetic Underwater Vehicle with Fin Propulsion[J]
  publication-title: IEEE ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2011.2175004
– volume: 10
  start-page: 924
  issue: 7
  year: 2022
  ident: 10.1016/j.oceaneng.2023.115152_bib24
  article-title: A novel integrated gliding and flapping propulsion biomimetic manta-ray robot[J]
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse10070924
– volume: 148
  start-page: 75
  issue: JAN.15
  year: 2018
  ident: 10.1016/j.oceaneng.2023.115152_bib17
  article-title: Classification of biological and bioinspired aquatic systems: A review[J]
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2017.11.012
– volume: 4
  start-page: 1335
  year: 2019
  ident: 10.1016/j.oceaneng.2023.115152_bib6
  article-title: IPMC monolithic thin film robots fabricated through a multi-layer casting process[J]
  publication-title: IEEE Rob. Autom. Lett.
  doi: 10.1109/LRA.2019.2895398
– volume: 24
  start-page: 237
  issue: 2
  year: 1999
  ident: 10.1016/j.oceaneng.2023.115152_bib18
  article-title: Review of fish swimming modes for aquatic locomotion[J]
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/48.757275
– start-page: 1132
  year: 2015
  ident: 10.1016/j.oceaneng.2023.115152_bib14
– volume: 44
  start-page: 759
  issue: 5
  year: 2008
  ident: 10.1016/j.oceaneng.2023.115152_bib19
  article-title: Load characteristics of mechanical pectoral fin[J]
  publication-title: Exp. Fluid
  doi: 10.1007/s00348-007-0432-x
– volume: 7
  start-page: 1
  year: 1978
  ident: 10.1016/j.oceaneng.2023.115152_bib10
  article-title: 1 Form, Function, and Locomotory Habits in Fish[J]
  publication-title: Fish Physiol.
  doi: 10.1016/S1546-5098(08)60163-6
– volume: 17
  start-page: 25
  issue: 2
  year: 2008
  ident: 10.1016/j.oceaneng.2023.115152_bib20
  article-title: Embedded SMA wire actuated biomimetic fin: a module for biomimetic underwater propulsion[J]
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/17/2/025039
– volume: 3
  issue: 4
  year: 2017
  ident: 10.1016/j.oceaneng.2023.115152_bib8
  article-title: Fast-moving soft electronic fish[J]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1602045
– volume: 11
  start-page: 2556
  issue: 6
  year: 2021
  ident: 10.1016/j.oceaneng.2023.115152_bib2
  article-title: Bio-inspired design of an underwater robot exploiting fin undulation propulsion[J]
  publication-title: Appl. Sci.
  doi: 10.3390/app11062556
– volume: 251
  start-page: 72
  issue: 1
  year: 1984
  ident: 10.1016/j.oceaneng.2023.115152_bib21
  article-title: Form and Function in Fish Swimming[J]
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0784-72
– year: 2011
  ident: 10.1016/j.oceaneng.2023.115152_bib4
  article-title: Ionic polymer-metal composite enabled robotic manta ray[C]
– volume: 591
  start-page: 66
  issue: 7848
  year: 2021
  ident: 10.1016/j.oceaneng.2023.115152_bib9
  article-title: Self-powered soft robot in the Mariana Trench[J]
  publication-title: Nature
  doi: 10.1038/s41586-020-03153-z
– volume: 204
  start-page: 379
  year: 2001
  ident: 10.1016/j.oceaneng.2023.115152_bib11
  article-title: Rosenberger. Pectoral Fin Locomotion in Batoid Fishes: Undulation Versus Oscillation[J]
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.204.2.379
– volume: 46
  start-page: 779
  issue: 6
  year: 2019
  ident: 10.1016/j.oceaneng.2023.115152_bib3
  article-title: CPG-fuzzy-based control of a cownose-ray-like fish robot[J]
  publication-title: Ind. Robot: Int. J. Robot. Res. Appl.
  doi: 10.1108/IR-02-2019-0029
– volume: 10
  issue: 7
  year: 2022
  ident: 10.1016/j.oceaneng.2023.115152_bib12
  article-title: A Manta Ray Robot with Soft Material Based Flapping Wing[J]
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse10070962
– volume: 181
  start-page: 145
  year: 2019
  ident: 10.1016/j.oceaneng.2023.115152_bib16
  article-title: Advancements in the field of autonomous underwater vehicle[J]
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2019.04.011
SSID ssj0006603
Score 2.4847383
Snippet Manta rays achieve propulsion through the undulation of their pectoral fins, making them an important subject of study in bionics due to their efficient and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 115152
SubjectTerms Bionic pectoral fin
Hydrodynamic analysis
Manta ray robot
Mechanism motion analysis
Underwater tests
Title Design and implementation of multi-level linkage mechanism bionic pectoral fin for manta ray robot
URI https://dx.doi.org/10.1016/j.oceaneng.2023.115152
Volume 284
WOSCitedRecordID wos001035273400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006603
  issn: 0029-8018
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZCywEqISggWh7ygVu0Iet92ceqFAFCBUQRua3sXVvdKNmNQtKGf8-Mva-giNIDl1Vkyd7HfJkZj7-ZIeS1yjUYulh6ETj4HrY09mQotGePYbifMZHZkvmfkvNzPpmIL4PBdZMLczVLypJvNmLxX0UNYyBsTJ29hbjbRWEAfoPQ4Qpih-s_Cf6t5WS4Q4F5ww5v_ELLH_RmyBQa4tktMnbmGrN_sVmGKmw_nIWN5GNmY-FoiHP4_HK4lL-Gy0pVW9H8zxmG8nVX1bA7ZbL67GuxWXcA_LG2qAFIlt3gt0vtFM7ppayu1x3QbGS2mBa6H5pgAfIoXHJmmyog0ATyvrplPOwpTB8dKrZTl7uwwnRU4YvAg4zwFqNuwnbx7D-MWks1bFhs07RZJ8V1UrfOHbLPkkiAOtw_-XA2-dga8TgeBw07CN-gl1y--4l2-zU9X-XiIXlQbzLoiQPHIzLQ5SG53ys9eUgOrODqeuWPiXKooYAauo0aWhnaQw2tUUNb1FCHGtqghgJqKKCGWtRQQA21qHlCvr87uzh979XtN7ws8NnKC3Mh8pijEUhEpAwbq1Ao2D8kiYy1EjEbByyPtOFSglOc-9rkzBjYM2hlYl8GT8leWZX6GaFGK65AJQhjolBwzX3jhzIOM9_XuIM9IlHz8dKsrk2PLVJm6d_Fd0TetPMWrjrLjTNEI5u09jGd75gC7G6Ye3zruz0n97r_xQuyt1qu9UtyN7taFT-Xr2rM_QYJ5KHg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+implementation+of+multi-level+linkage+mechanism+bionic+pectoral+fin+for+manta+ray+robot&rft.jtitle=Ocean+engineering&rft.au=Sun%2C+Qixuan&rft.au=Wu%2C+Jiannan&rft.au=Sheng%2C+Chaowu&rft.au=Hu%2C+Sijie&rft.date=2023-09-15&rft.issn=0029-8018&rft.volume=284&rft.spage=115152&rft_id=info:doi/10.1016%2Fj.oceaneng.2023.115152&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oceaneng_2023_115152
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon