Applying the stereo-vision detection technique to the development of underwater inspection task with PSO-based dynamic routing algorithm for autonomous underwater vehicles
This research is an extension of image detection technique for obstacle-avoidance of autonomous underwater vehicles (AUVs) by applying the BK triangle sub-product of fuzzy relations. According to the concept of stereo-vision detection technique, the obstacles as well as offshore structures can be re...
Saved in:
| Published in: | Ocean engineering Vol. 139; pp. 127 - 139 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
15.07.2017
|
| Subjects: | |
| ISSN: | 0029-8018, 1873-5258 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This research is an extension of image detection technique for obstacle-avoidance of autonomous underwater vehicles (AUVs) by applying the BK triangle sub-product of fuzzy relations. According to the concept of stereo-vision detection technique, the obstacles as well as offshore structures can be reconstructed by depth images. By obtaining the depth information in the space, the optimal route can be evaluated combining PSO (Particle Swarm Optimization)-based dynamic routing algorithm. In this study, the graphical language, LabVIEW (Laboratory Virtual Instrument Engineering Workbench), is used to simulate the AUV's inspection task in the offshore wind farm. The interface shows the pose, trajectories, perspectives and real-time series of 6-Degrees of Freedom (DOF) motion for the AUV. In the existence of obstacles, the AUV is found to conduct inspection tasks of the offshore wind farm with feasible routes by considering minimum time and energy consumption successfully. In summary, the stereo-vision detection technique with PSO-based dynamic routing algorithm is not only beneficial to optimize feasible routes but also identify features of objects for the purpose tracking and obstacle-avoidance more efficiently.
•The image detection technique with PSO-based dynamic routing algorithm has been developed•The relationship of the two Pareto-optimal sets is non-dominant under different velocity conditions•Each solution of the minimum time route takes less time than that of the minimum energy consumption routes•Each energy optimization solution expends a lower amount of energy than the time optimization solutions•The difference of these two sets is high under low-velocity conditions |
|---|---|
| AbstractList | This research is an extension of image detection technique for obstacle-avoidance of autonomous underwater vehicles (AUVs) by applying the BK triangle sub-product of fuzzy relations. According to the concept of stereo-vision detection technique, the obstacles as well as offshore structures can be reconstructed by depth images. By obtaining the depth information in the space, the optimal route can be evaluated combining PSO (Particle Swarm Optimization)-based dynamic routing algorithm. In this study, the graphical language, LabVIEW (Laboratory Virtual Instrument Engineering Workbench), is used to simulate the AUV's inspection task in the offshore wind farm. The interface shows the pose, trajectories, perspectives and real-time series of 6-Degrees of Freedom (DOF) motion for the AUV. In the existence of obstacles, the AUV is found to conduct inspection tasks of the offshore wind farm with feasible routes by considering minimum time and energy consumption successfully. In summary, the stereo-vision detection technique with PSO-based dynamic routing algorithm is not only beneficial to optimize feasible routes but also identify features of objects for the purpose tracking and obstacle-avoidance more efficiently.
•The image detection technique with PSO-based dynamic routing algorithm has been developed•The relationship of the two Pareto-optimal sets is non-dominant under different velocity conditions•Each solution of the minimum time route takes less time than that of the minimum energy consumption routes•Each energy optimization solution expends a lower amount of energy than the time optimization solutions•The difference of these two sets is high under low-velocity conditions |
| Author | Wang, Shun-Ming Huang, Lin-Chin Lin, Yu-Hsien Fang, Ming-Chung |
| Author_xml | – sequence: 1 givenname: Yu-Hsien surname: Lin fullname: Lin, Yu-Hsien email: vyhlin@mail.ncku.edu.tw organization: Dept. of Systems & Naval Mechatronic Eng., National Cheng-Kung University, Tainan City 70101, Taiwan – sequence: 2 givenname: Shun-Ming surname: Wang fullname: Wang, Shun-Ming organization: Dept. of Systems & Naval Mechatronic Eng., National Cheng-Kung University, Tainan City 70101, Taiwan – sequence: 3 givenname: Lin-Chin surname: Huang fullname: Huang, Lin-Chin organization: Dept. of Systems & Naval Mechatronic Eng., National Cheng-Kung University, Tainan City 70101, Taiwan – sequence: 4 givenname: Ming-Chung surname: Fang fullname: Fang, Ming-Chung organization: Dept. of Systems & Naval Mechatronic Eng., National Cheng-Kung University, Tainan City 70101, Taiwan |
| BookMark | eNqFkN1qGzEQRkVJobaTVwh6gd2O9lcLvWgIbRoIpND0WsjSrC13V9pKWhs_U16yu3EMJTe5mu9izjfMWZIL6ywScs0gZcCqz7vUKZQW7SbNgNUpFCmU7ANZMF7nSZmV_IIsALIm4cD4J7IMYQcAVQX5gjzfDEN3NHZD4xZpiOjRJXsTjLNUY0QV5zTNrTV_R6TRvSxq3GPnhh5tpK6lo9XoD3KiqbFhOFMy_KEHE7f056_HZC0DaqqPVvZGUe_GOF-V3cb5aaWnrfNUjtFZ17sx_F-5x61RHYZL8rGVXcCr17kiv79_e7r9kTw83t3f3jwkKmdZTIqGFTyTbcEaXWWSV6XWNdN1WyGUDc9ryJnkqqzbBup1UbVqXfP1lBRnuc5kviLVqVd5F4LHVgze9NIfBQMxKxc7cVYuZuUCCjEpn8Avb0BlopxdRC9N9z7-9YTj9NzeoBdBGbQKtfGTUqGdea_iH6rHqcg |
| CitedBy_id | crossref_primary_10_1155_2021_8847863 crossref_primary_10_1016_j_oceaneng_2018_08_007 crossref_primary_10_1016_j_autcon_2024_105764 crossref_primary_10_3390_jmse7040107 crossref_primary_10_1016_j_robot_2019_07_001 crossref_primary_10_1016_j_oceaneng_2021_109407 crossref_primary_10_1155_2019_4276987 crossref_primary_10_1109_ACCESS_2025_3556446 crossref_primary_10_1364_AO_428502 crossref_primary_10_3390_jmse12122364 crossref_primary_10_1016_j_matcom_2020_09_019 crossref_primary_10_3389_fmars_2024_1357879 crossref_primary_10_1016_j_oceaneng_2021_109073 crossref_primary_10_1016_j_oceaneng_2023_115678 crossref_primary_10_1016_j_asoc_2021_107754 crossref_primary_10_3390_s18103570 crossref_primary_10_1016_j_oceaneng_2019_106327 crossref_primary_10_1016_j_marstruc_2018_02_001 crossref_primary_10_1016_j_oceaneng_2022_111070 crossref_primary_10_3390_app10072480 crossref_primary_10_1016_j_oceaneng_2018_10_015 crossref_primary_10_1002_cpe_6140 crossref_primary_10_1088_1361_6501_aba232 crossref_primary_10_1155_2019_6320186 crossref_primary_10_1016_j_oceaneng_2020_108242 crossref_primary_10_1109_ACCESS_2021_3108177 crossref_primary_10_1007_s11044_019_09720_1 crossref_primary_10_1016_j_advengsoft_2022_103319 |
| Cites_doi | 10.1109/OCEANSSYD.2010.5603905 10.15607/RSS.2005.I.008 10.1007/s10596-009-9142-1 10.1016/j.robot.2014.10.007 10.1109/3477.956031 10.1007/BFb0040810 10.1016/j.neucom.2012.09.019 10.1016/0025-3227(84)90006-9 10.1007/s11370-013-0138-2 10.1109/JOE.2013.2278891 10.1007/s001380100065 10.1109/IROS.2010.5649246 10.1016/j.oceaneng.2014.11.001 10.1109/CYBER.2014.6917525 10.1109/OCEANSE.2005.1513260 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Ltd |
| Copyright_xml | – notice: 2017 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.oceaneng.2017.04.051 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Oceanography |
| EISSN | 1873-5258 |
| EndPage | 139 |
| ExternalDocumentID | 10_1016_j_oceaneng_2017_04_051 S0029801817302457 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SET SEW WUQ ~HD |
| ID | FETCH-LOGICAL-c312t-491482af419d62a865dd71d7f6e059837031a8c57f907b46fcb78b7b4c813d2a3 |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000403987300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-8018 |
| IngestDate | Tue Nov 18 21:55:32 EST 2025 Sat Nov 29 05:33:12 EST 2025 Fri Feb 23 02:26:20 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Underwater inspection Fuzzy control AUV Dynamic routing algorithm Stereo vision PSO |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c312t-491482af419d62a865dd71d7f6e059837031a8c57f907b46fcb78b7b4c813d2a3 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1016_j_oceaneng_2017_04_051 crossref_citationtrail_10_1016_j_oceaneng_2017_04_051 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2017_04_051 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-07-15 |
| PublicationDateYYYYMMDD | 2017-07-15 |
| PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Ocean engineering |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Onwunalu, Durlofsky (bib13) 2010; 14 Paull, Saeedi, Seto, Li (bib15) 2014; 39 Zhang, Gong, Zhang (bib19) 2013; 103 Eustice, R., Singh, H., Leonard, J.J., Walter, M., Ballard, R., 2005. Visually navigating the RMS titanic with SLAM information filters. In: Proceedings of Robotics: Science and Systems (RSS). Saravanakumar, Asokan (bib16) 2013; 6 Armstrong, B., Wolbrecht, E., Edwards, D., 2010. AUV navigation in the presence of a magnetic disturbance with an extended Kalman filter, OCEANS 2010 IEEE-Sydney. IEEE, pp. 1–6. Belderson, Jones, Gorini, Kenyon (bib3) 1984; 56 Kermorgant, H.A., Scourzic, D., 2005. Interrelated functional topics concerning autonomy related issues in the context of autonomous inspection of underwater structures. Oceans 2005-Europe. IEEE, pp. 1370–1375. Belderson, Jones, Gorini, Kenyon (bib4) 1984; 56 Mallios, A., Ridao, P., Ribas, D., Maurelli, F., Petillot, Y., 2010. EKF-SLAM for AUV navigation under probabilistic sonar scan-matching. Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pp. 4404–4411. Fang, Wang, Wu, Lin (bib7) 2015; 93 Ortiz, Simó, Oliver (bib14) 2002; 13 Chen, H., Stavinoha, S., Walker, M., Zhang, B., Fuhlbrigge, T., 2014. Exploring robotic applications in offshore oil & gas industry. Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), 2014 IEEE 4th Annual International Conference on. IEEE, pp. 563–568. Ataei, Yousefi-Koma (bib2) 2015; 67 Foresti (bib8) 2001; 31 Kennedy (bib10) 2011 Griffiths (bib9) 1997 Zerr, Mailfert, Bertholom, Ayreault (bib18) 2005; 121 Shi, Y., Eberhart, R.C., 1998. Parameter selection in particle swarm optimization. International Conference on Evolutionary Programming. Springer, pp. 591–600. 10.1016/j.oceaneng.2017.04.051_bib17 Fang (10.1016/j.oceaneng.2017.04.051_bib7) 2015; 93 Ataei (10.1016/j.oceaneng.2017.04.051_bib2) 2015; 67 Saravanakumar (10.1016/j.oceaneng.2017.04.051_bib16) 2013; 6 Onwunalu (10.1016/j.oceaneng.2017.04.051_bib13) 2010; 14 Belderson (10.1016/j.oceaneng.2017.04.051_bib3) 1984; 56 Griffiths (10.1016/j.oceaneng.2017.04.051_bib9) 1997 Zhang (10.1016/j.oceaneng.2017.04.051_bib19) 2013; 103 Paull (10.1016/j.oceaneng.2017.04.051_bib15) 2014; 39 Zerr (10.1016/j.oceaneng.2017.04.051_bib18) 2005; 121 Kennedy (10.1016/j.oceaneng.2017.04.051_bib10) 2011 10.1016/j.oceaneng.2017.04.051_bib6 Foresti (10.1016/j.oceaneng.2017.04.051_bib8) 2001; 31 10.1016/j.oceaneng.2017.04.051_bib5 Ortiz (10.1016/j.oceaneng.2017.04.051_bib14) 2002; 13 10.1016/j.oceaneng.2017.04.051_bib1 10.1016/j.oceaneng.2017.04.051_bib11 Belderson (10.1016/j.oceaneng.2017.04.051_bib4) 1984; 56 10.1016/j.oceaneng.2017.04.051_bib12 |
| References_xml | – volume: 39 start-page: 131 year: 2014 end-page: 149 ident: bib15 article-title: AUV navigation and localization: a review publication-title: Ocean. Eng. IEEE J. Of – volume: 56 start-page: 65 year: 1984 end-page: 78 ident: bib4 article-title: A long-range side-scan sonar (Gloria) survey of the Romanche active transform in the Equatorial Atlantic publication-title: Mar. Geol. – volume: 56 start-page: 65 year: 1984 end-page: 78 ident: bib3 article-title: A long-range side-scan sonar (Gloria) survey of the Romanche active transform in the equatorial Atlantic publication-title: Mar. Geol. – reference: Eustice, R., Singh, H., Leonard, J.J., Walter, M., Ballard, R., 2005. Visually navigating the RMS titanic with SLAM information filters. In: Proceedings of Robotics: Science and Systems (RSS). – reference: Kermorgant, H.A., Scourzic, D., 2005. Interrelated functional topics concerning autonomy related issues in the context of autonomous inspection of underwater structures. Oceans 2005-Europe. IEEE, pp. 1370–1375. – reference: Armstrong, B., Wolbrecht, E., Edwards, D., 2010. AUV navigation in the presence of a magnetic disturbance with an extended Kalman filter, OCEANS 2010 IEEE-Sydney. IEEE, pp. 1–6. – volume: 14 start-page: 183 year: 2010 end-page: 198 ident: bib13 article-title: Application of a particle swarm optimization algorithm for determining optimum well location and type publication-title: Comput. Geosci. – volume: 31 start-page: 691 year: 2001 end-page: 705 ident: bib8 article-title: Visual inspection of sea bottom structures by an autonomous underwater vehicle publication-title: Syst. Man Cybern. Part B: Cybern. IEEE Trans. on – volume: 121 start-page: 124 year: 2005 end-page: 130 ident: bib18 article-title: Sidescan sonar image processing for AUV navigation publication-title: Eur. Oceans – reference: Mallios, A., Ridao, P., Ribas, D., Maurelli, F., Petillot, Y., 2010. EKF-SLAM for AUV navigation under probabilistic sonar scan-matching. Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pp. 4404–4411. – volume: 103 start-page: 172 year: 2013 end-page: 185 ident: bib19 article-title: Robot path planning in uncertain environment using multi-objective particle swarm optimization publication-title: Neurocomputing – volume: 67 start-page: 23 year: 2015 end-page: 32 ident: bib2 article-title: Three-dimensional optimal path planning for waypoint guidance of an autonomous underwater vehicle publication-title: Robot. Auton. Syst. – volume: 93 start-page: 11 year: 2015 end-page: 24 ident: bib7 article-title: Applying the self-tuning fuzzy control with the image detection technique on the obstacle-avoidance for autonomous underwater vehicles publication-title: Ocean Eng. – volume: 6 start-page: 211 year: 2013 end-page: 224 ident: bib16 article-title: Multipoint potential field method for path planning of autonomous underwater vehicles in 3D space publication-title: Intell. Serv. Robot. – volume: 13 start-page: 129 year: 2002 end-page: 140 ident: bib14 article-title: A vision system for an underwater cable tracker publication-title: Mach. Vision. Appl. – start-page: 24 year: 1997 end-page: 25 ident: bib9 article-title: Ocean science applications for autonomous underwater vehicles – the work plan For Autosub-1 for 1997–2000 and beyond publication-title: Unmanned Underw. Veh. Showc. – start-page: 760 year: 2011 end-page: 766 ident: bib10 article-title: Particle Swarm Optimization, Encyclopedia of Machine Learning – reference: Chen, H., Stavinoha, S., Walker, M., Zhang, B., Fuhlbrigge, T., 2014. Exploring robotic applications in offshore oil & gas industry. Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), 2014 IEEE 4th Annual International Conference on. IEEE, pp. 563–568. – reference: Shi, Y., Eberhart, R.C., 1998. Parameter selection in particle swarm optimization. International Conference on Evolutionary Programming. Springer, pp. 591–600. – ident: 10.1016/j.oceaneng.2017.04.051_bib1 doi: 10.1109/OCEANSSYD.2010.5603905 – ident: 10.1016/j.oceaneng.2017.04.051_bib6 doi: 10.15607/RSS.2005.I.008 – volume: 14 start-page: 183 issue: 1 year: 2010 ident: 10.1016/j.oceaneng.2017.04.051_bib13 article-title: Application of a particle swarm optimization algorithm for determining optimum well location and type publication-title: Comput. Geosci. doi: 10.1007/s10596-009-9142-1 – volume: 67 start-page: 23 year: 2015 ident: 10.1016/j.oceaneng.2017.04.051_bib2 article-title: Three-dimensional optimal path planning for waypoint guidance of an autonomous underwater vehicle publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2014.10.007 – volume: 31 start-page: 691 issue: 5 year: 2001 ident: 10.1016/j.oceaneng.2017.04.051_bib8 article-title: Visual inspection of sea bottom structures by an autonomous underwater vehicle publication-title: Syst. Man Cybern. Part B: Cybern. IEEE Trans. on doi: 10.1109/3477.956031 – start-page: 760 year: 2011 ident: 10.1016/j.oceaneng.2017.04.051_bib10 – ident: 10.1016/j.oceaneng.2017.04.051_bib17 doi: 10.1007/BFb0040810 – volume: 103 start-page: 172 year: 2013 ident: 10.1016/j.oceaneng.2017.04.051_bib19 article-title: Robot path planning in uncertain environment using multi-objective particle swarm optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.09.019 – volume: 56 start-page: 65 issue: 1 year: 1984 ident: 10.1016/j.oceaneng.2017.04.051_bib4 article-title: A long-range side-scan sonar (Gloria) survey of the Romanche active transform in the Equatorial Atlantic publication-title: Mar. Geol. doi: 10.1016/0025-3227(84)90006-9 – volume: 6 start-page: 211 issue: 4 year: 2013 ident: 10.1016/j.oceaneng.2017.04.051_bib16 article-title: Multipoint potential field method for path planning of autonomous underwater vehicles in 3D space publication-title: Intell. Serv. Robot. doi: 10.1007/s11370-013-0138-2 – start-page: 24 year: 1997 ident: 10.1016/j.oceaneng.2017.04.051_bib9 article-title: Ocean science applications for autonomous underwater vehicles – the work plan For Autosub-1 for 1997–2000 and beyond publication-title: Unmanned Underw. Veh. Showc. – volume: 39 start-page: 131 issue: 1 year: 2014 ident: 10.1016/j.oceaneng.2017.04.051_bib15 article-title: AUV navigation and localization: a review publication-title: Ocean. Eng. IEEE J. Of doi: 10.1109/JOE.2013.2278891 – volume: 121 start-page: 124 year: 2005 ident: 10.1016/j.oceaneng.2017.04.051_bib18 article-title: Sidescan sonar image processing for AUV navigation publication-title: Eur. Oceans – volume: 13 start-page: 129 issue: 3 year: 2002 ident: 10.1016/j.oceaneng.2017.04.051_bib14 article-title: A vision system for an underwater cable tracker publication-title: Mach. Vision. Appl. doi: 10.1007/s001380100065 – ident: 10.1016/j.oceaneng.2017.04.051_bib12 doi: 10.1109/IROS.2010.5649246 – volume: 93 start-page: 11 year: 2015 ident: 10.1016/j.oceaneng.2017.04.051_bib7 article-title: Applying the self-tuning fuzzy control with the image detection technique on the obstacle-avoidance for autonomous underwater vehicles publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2014.11.001 – volume: 56 start-page: 65 issue: 1–4 year: 1984 ident: 10.1016/j.oceaneng.2017.04.051_bib3 article-title: A long-range side-scan sonar (Gloria) survey of the Romanche active transform in the equatorial Atlantic publication-title: Mar. Geol. doi: 10.1016/0025-3227(84)90006-9 – ident: 10.1016/j.oceaneng.2017.04.051_bib5 doi: 10.1109/CYBER.2014.6917525 – ident: 10.1016/j.oceaneng.2017.04.051_bib11 doi: 10.1109/OCEANSE.2005.1513260 |
| SSID | ssj0006603 |
| Score | 2.3280468 |
| Snippet | This research is an extension of image detection technique for obstacle-avoidance of autonomous underwater vehicles (AUVs) by applying the BK triangle... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 127 |
| SubjectTerms | AUV Dynamic routing algorithm Fuzzy control PSO Stereo vision Underwater inspection |
| Title | Applying the stereo-vision detection technique to the development of underwater inspection task with PSO-based dynamic routing algorithm for autonomous underwater vehicles |
| URI | https://dx.doi.org/10.1016/j.oceaneng.2017.04.051 |
| Volume | 139 |
| WOSCitedRecordID | wos000403987300012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5258 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006603 issn: 0029-8018 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWWLQdAQlBAlC_5wG1lyLfjY4WKFiTaSi1iOUVJ7LRblqTKJkv5Tfwo_gozsZ2kolJBiEsUJZ5Eyns7Hntn3hDy0s9zV0mHswJ8HQtS4bIskz4AEuYQHkXK8Yqu2QTf348XC3E4mfy0tTCbFS_L-OJCnP9XqOEagI2ls38Bd_9QuADnADocAXY4_hHwGFd-t0VQKIOgKqYryGdSNUq3Bh-kW03sKYfkIYwfsbSs_paiguKy1NWYaJWuv-id28OjA4YToJxJ3dJ-Vldtl0Gdrk6qGoZ81fmZbYNVE5hnO3rkRp122XjjyPggx_8E1CCP2KcKaZWDzy2br5dD4donu9F92pbsw2j8vDV3wJBhe_CeouY6DoYbrTExWx5ut5eqiz71PpytxRkSn3RdgsD5Vntzpd15zH1Yamtx-N7fa_Uk47FdLU1gJn9z77d5RW9xnL2q8FvAp8CcQN5p5Bq53Mua3Uedsj1qoYED9YKQ3yBbHg9FPCVbu-_2Fu_7YCGKHN9mIaHBqIj96rddHT-NYqLje-SuWczQXU3C-2Siym1yeyRxuU3udLgaXfQH5IdlJwXS0UvspD07ac9O2lTdwBE7aVXQgUp0YCdFdlJkJ-3ZSQ07qWEn7dlJgZ10YOf4kZadD8nHt3vHb-bM9Athue96DQsEitqmReAKGXlpHIVSclfyAjwOfHsfWzWkcR7yQjg8C6Iiz3icwRl4JV96qf-ITMuqVI8JFV6YBSJVPAqioIA1tShCcGGuUD5QJHB3SGhRSHIjpo89XVaJzZo8Syx6CaKXOEEC6O2Q173duZaTudZCWJATExTrYDcBbl5j--QfbJ-SW8NP7xmZNnWrnpOb-aZZrusXhsa_AKic6fc |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+the+stereo-vision+detection+technique+to+the+development+of+underwater+inspection+task+with+PSO-based+dynamic+routing+algorithm+for+autonomous+underwater+vehicles&rft.jtitle=Ocean+engineering&rft.au=Lin%2C+Yu-Hsien&rft.au=Wang%2C+Shun-Ming&rft.au=Huang%2C+Lin-Chin&rft.au=Fang%2C+Ming-Chung&rft.date=2017-07-15&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.eissn=1873-5258&rft.volume=139&rft.spage=127&rft.epage=139&rft_id=info:doi/10.1016%2Fj.oceaneng.2017.04.051&rft.externalDocID=S0029801817302457 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |