On solving the split generalized equilibrium problem and the fixed point problem for a countable family of nonexpansive multivalued mappings
We consider the split generalized equilibrium problem and the fixed point problem for a countable family of nonexpansive multivalued mappings in real Hilbert spaces. Then, using the shrinking projection method, we prove a strong convergence theorem for finding a common solution of the considered pro...
Uloženo v:
| Vydáno v: | Fixed point theory and applications (Hindawi Publishing Corporation) Ročník 2018; číslo 1; s. 1 - 17 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.03.2018
SpringerOpen |
| Témata: | |
| ISSN: | 1687-1812, 1687-1812 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We consider the split generalized equilibrium problem and the fixed point problem for a countable family of nonexpansive multivalued mappings in real Hilbert spaces. Then, using the shrinking projection method, we prove a strong convergence theorem for finding a common solution of the considered problems. A numerical example is presented to illustrate the convergence result. Our results improve and extend the corresponding results in the literature. |
|---|---|
| ISSN: | 1687-1812 1687-1812 |
| DOI: | 10.1186/s13663-018-0631-6 |