Improved Approximation Algorithms for Bounded-Degree Local Hamiltonians

The low-temperature properties of interacting quantum systems are believed to require exponential resources to compute in the general case. Quantifying the extent to which such properties can be approximated using efficient algorithms remains a significant open challenge. Here, we consider the task...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physical review letters Ročník 127; číslo 25; s. 250502
Hlavní autoři: Anshu, Anurag, Gosset, David, Morenz Korol, Karen J., Soleimanifar, Mehdi
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 17.12.2021
ISSN:0031-9007, 1079-7114, 1079-7114
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The low-temperature properties of interacting quantum systems are believed to require exponential resources to compute in the general case. Quantifying the extent to which such properties can be approximated using efficient algorithms remains a significant open challenge. Here, we consider the task of approximating the ground state energy of two-local quantum Hamiltonians with bounded-degree interaction graphs. Most existing algorithms optimize the energy over the set of product states. We propose and analyze a family of shallow quantum circuits that can be used to improve the approximation ratio achieved by a given product state. The algorithm takes as input an n-qubit product state with variance Var and improves its energy by an amount proportional to Var^{2}/n. In a typical case, this results in an extensive improvement in the estimated energy. We extend our results to k-local Hamiltonians and entangled initial states.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0031-9007
1079-7114
1079-7114
DOI:10.1103/PhysRevLett.127.250502