Multigrid Algorithms for Tensor Network States

The widely used density matrix renormalization group (DRMG) method often fails to converge in systems with multiple length scales, such as lattice discretizations of continuum models and dilute or weakly doped lattice models. The local optimization employed by DMRG to optimize the wave function is i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Physical review letters Ročník 109; číslo 2; s. 020604
Hlavní autori: Dolfi, Michele, Bauer, Bela, Troyer, Matthias, Ristivojevic, Zoran
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 13.07.2012
ISSN:0031-9007, 1079-7114, 1079-7114
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The widely used density matrix renormalization group (DRMG) method often fails to converge in systems with multiple length scales, such as lattice discretizations of continuum models and dilute or weakly doped lattice models. The local optimization employed by DMRG to optimize the wave function is ineffective in updating large-scale features. Here we present a multigrid algorithm that solves these convergence problems by optimizing the wave function at different spatial resolutions. We demonstrate its effectiveness by simulating bosons in continuous space and study nonadiabaticity when ramping up the amplitude of an optical lattice. The algorithm can be generalized to tensor network methods and combined with the contractor renormalization group method to study dilute and weakly doped lattice models.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0031-9007
1079-7114
1079-7114
DOI:10.1103/PhysRevLett.109.020604