On Rigid Matrices and U-Polynomials
We introduce a class of polynomials, which we call U - polynomials , and show that the problem of explicitly constructing a rigid matrix can be reduced to the problem of explicitly constructing a small hitting set for this class. We prove that small-bias sets are hitting sets for the class of U -pol...
Uloženo v:
| Vydáno v: | Computational complexity Ročník 24; číslo 4; s. 851 - 879 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.12.2015
|
| Témata: | |
| ISSN: | 1016-3328, 1420-8954 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We introduce a class of polynomials, which we call
U
-
polynomials
, and show that the problem of explicitly constructing a rigid matrix can be reduced to the problem of explicitly constructing a small hitting set for this class. We prove that small-bias sets are hitting sets for the class of
U
-polynomials, though their size is larger than desired. Furthermore, we give two alternative proofs for the fact that small-bias sets induce rigid matrices.
Finally, we construct rigid matrices from unbalanced expanders, with essentially the same size as the construction via small-bias sets. |
|---|---|
| ISSN: | 1016-3328 1420-8954 |
| DOI: | 10.1007/s00037-015-0112-9 |